Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import spaces
|
|
3 |
|
4 |
import torch
|
5 |
torch.jit.script = lambda f: f
|
6 |
-
torch.autocast = lambda device_type, dtype: lambda f: f
|
7 |
|
8 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
9 |
|
@@ -11,17 +11,17 @@ print(list_all_vqascore_models())
|
|
11 |
|
12 |
# Initialize the model only once
|
13 |
# if torch.cuda.is_available():
|
14 |
-
|
15 |
-
|
16 |
|
17 |
@spaces.GPU
|
18 |
def generate(model_name, image, text):
|
19 |
# print("Model_name:", model_name)
|
20 |
print("Image:", image)
|
21 |
print("Text:", text)
|
22 |
-
model_pipe = VQAScore(model="clip-flant5-xl") # our recommended scoring model
|
23 |
# print("Model initialized, now moving to cuda")
|
24 |
-
|
25 |
print("Generating!")
|
26 |
return model_pipe(images=[image], texts=[text])
|
27 |
|
|
|
3 |
|
4 |
import torch
|
5 |
torch.jit.script = lambda f: f
|
6 |
+
# torch.autocast = lambda device_type, dtype: lambda f: f
|
7 |
|
8 |
from t2v_metrics import VQAScore, list_all_vqascore_models
|
9 |
|
|
|
11 |
|
12 |
# Initialize the model only once
|
13 |
# if torch.cuda.is_available():
|
14 |
+
model_pipe = VQAScore(model="clip-flant5-xl") # our recommended scoring model
|
15 |
+
print("Model initialized!")
|
16 |
|
17 |
@spaces.GPU
|
18 |
def generate(model_name, image, text):
|
19 |
# print("Model_name:", model_name)
|
20 |
print("Image:", image)
|
21 |
print("Text:", text)
|
22 |
+
# model_pipe = VQAScore(model="clip-flant5-xl") # our recommended scoring model
|
23 |
# print("Model initialized, now moving to cuda")
|
24 |
+
model_pipe.to("cuda")
|
25 |
print("Generating!")
|
26 |
return model_pipe(images=[image], texts=[text])
|
27 |
|