tts_app / app.py
zhiweiliu's picture
Create app.py
b4dfa1e verified
raw
history blame
6.24 kB
import gradio as gr
import argparse
import torchaudio
from tts import StepAudioTTS
from tokenizer import StepAudioTokenizer
from datetime import datetime
import os
# 普通语音合成
def tts_common(text, speaker, emotion, language, speed):
text = (
(f"({emotion})" if emotion else "")
+ (f"({language})" if language else "")
+ (f"({speed})" if speed else "")
+ text
)
output_audio, sr = tts_engine(text, speaker)
return output_audio
# RAP / 哼唱模式
def tts_music(text_input_rap, speaker, mode_input):
text_input_rap = f"({mode_input})" + text_input_rap
output_audio, sr = tts_engine(text_input_rap, speaker)
return output_audio
# 语音克隆
def tts_clone(text, wav_file, speaker_prompt, emotion, language, speed):
clone_speaker = {
"wav_path": wav_file,
"speaker": "custom_voice",
"prompt_text": speaker_prompt,
}
clone_text = (
(f"({emotion})" if emotion else "")
+ (f"({language})" if language else "")
+ (f"({speed})" if speed else "")
+ text
)
output_audio, sr = tts_engine(clone_text, "", clone_speaker)
return output_audio
def launch_demo(args):
# 选项列表
emotion_options = ["高兴1", "高兴2", "生气1", "生气2", "悲伤1", "撒娇1"]
language_options = ["中文", "英文", "韩语", "日语", "四川话", "粤语", "广东话"]
speed_options = ["慢速1", "慢速2", "快速1", "快速2"]
speaker_options = ["Tingting", "nezha"]
# Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("## 🎙️ Step-Audio-TTS-3B Demo")
# 普通语音合成
with gr.Tab("Common TTS (普通语音合成)"):
text_input = gr.Textbox(
label="Input Text (输入文本)",
)
speaker_input = gr.Dropdown(
speaker_options,
label="Speaker Selection (音色选择)",
)
emotion_input = gr.Dropdown(
emotion_options,
label="Emotion Style (情感风格)",
allow_custom_value=True,
interactive=True,
)
language_input = gr.Dropdown(
language_options,
label="Language/Dialect (语言/方言)",
allow_custom_value=True,
interactive=True,
)
speed_input = gr.Dropdown(
speed_options,
label="Speech Rate (语速调节)",
allow_custom_value=True,
interactive=True,
)
submit_btn = gr.Button("🔊 Generate Speech (生成语音)")
output_audio = gr.Audio(
label="Output Audio (合成语音)",
interactive=False,
)
submit_btn.click(
tts_common,
inputs=[
text_input,
speaker_input,
emotion_input,
language_input,
speed_input,
],
outputs=output_audio,
)
# RAP / 哼唱模式
with gr.Tab("RAP/Humming Mode (RAP/哼唱模式)"):
text_input_rap = gr.Textbox(
label="Lyrics Input (歌词输入)",
)
speaker_input = gr.Dropdown(
speaker_options,
label="Speaker Selection (音色选择)",
)
mode_input = gr.Radio(
["RAP", "Humming (哼唱)"],
value="RAP",
label="Generation Mode (生成模式)",
)
submit_btn_rap = gr.Button("🎤 Generate Performance (生成演绎)")
output_audio_rap = gr.Audio(
label="Performance Audio (演绎音频)", interactive=False
)
submit_btn_rap.click(
tts_music,
inputs=[text_input_rap, speaker_input, mode_input],
outputs=output_audio_rap,
)
with gr.Tab("Voice Clone (语音克隆)"):
text_input_clone = gr.Textbox(
label="Target Text (目标文本)",
placeholder="Text to be synthesized with cloned voice (待克隆语音合成的文本)",
)
audio_input = gr.File(
label="Reference Audio Upload (参考音频上传)",
)
speaker_prompt = gr.Textbox(
label="Exact text from reference audio (输入参考音频的准确文本)",
)
emotion_input = gr.Dropdown(
emotion_options,
label="Emotion Style (情感风格)",
allow_custom_value=True,
interactive=True,
)
language_input = gr.Dropdown(
language_options,
label="Language/Dialect (语言/方言)",
allow_custom_value=True,
interactive=True,
)
speed_input = gr.Dropdown(
speed_options,
label="Speech Rate (语速调节)",
allow_custom_value=True,
interactive=True,
)
submit_btn_clone = gr.Button("🗣️ Synthesize Cloned Speech (合成克隆语音)")
output_audio_clone = gr.Audio(
label="Cloned Speech Output (克隆语音输出)",
interactive=False,
)
submit_btn_clone.click(
tts_clone,
inputs=[
text_input_clone,
audio_input,
speaker_prompt,
emotion_input,
language_input,
speed_input,
],
outputs=output_audio_clone,
)
# 启动 Gradio demo
demo.queue().launch(server_name=args.server_name, server_port=args.server_port)
if __name__ == "__main__":
model_id = "stepfun-ai/Step-Audio-TTS-3B"
tokeniers = "stepfun-ai/Step-Audio-Tokenizer"
encoder = StepAudioTokenizer(tokeniers)
tts_engine = StepAudioTTS(model_id, encoder)
launch_demo()