File size: 8,923 Bytes
a62d4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/* eslint-disable no-console */
/* eslint-disable no-plusplus */
import cv, { Mat } from 'opencv-ts'
import { getCapabilities } from './util'
import { ensureModel } from './cache'

function loadImage(url: string): Promise<HTMLImageElement> {
  return new Promise((resolve, reject) => {
    const img = new Image()
    img.crossOrigin = 'Anonymous'
    img.onload = () => resolve(img)
    img.onerror = () => reject(new Error(`Failed to load image from ${url}`))
    img.src = url
  })
}
function imgProcess(img: Mat) {
  const channels = new cv.MatVector()
  cv.split(img, channels) // 分割通道

  const C = channels.size() // 通道数
  const H = img.rows // 图像高度
  const W = img.cols // 图像宽度

  const chwArray = new Float32Array(C * H * W) // 创建新的数组来存储转换后的数据

  for (let c = 0; c < C; c++) {
    const channelData = channels.get(c).data // 获取单个通道的数据
    for (let h = 0; h < H; h++) {
      for (let w = 0; w < W; w++) {
        chwArray[c * H * W + h * W + w] = channelData[h * W + w] / 255.0
        // chwArray[c * H * W + h * W + w] = channelData[h * W + w]
      }
    }
  }

  channels.delete() // 清理内存
  return chwArray // 返回转换后的数据
}
async function tileProc(
  inputTensor: ort.Tensor,
  session: ort.InferenceSession,
  callback: (progress: number) => void
) {
  const inputDims = inputTensor.dims
  const imageW = inputDims[3]
  const imageH = inputDims[2]

  const rOffset = 0
  const gOffset = imageW * imageH
  const bOffset = imageW * imageH * 2

  const outputDims = [
    inputDims[0],
    inputDims[1],
    inputDims[2] * 4,
    inputDims[3] * 4,
  ]
  const outputTensor = new ort.Tensor(
    'float32',
    new Float32Array(
      outputDims[0] * outputDims[1] * outputDims[2] * outputDims[3]
    ),
    outputDims
  )

  const outImageW = outputDims[3]
  const outImageH = outputDims[2]
  const outROffset = 0
  const outGOffset = outImageW * outImageH
  const outBOffset = outImageW * outImageH * 2

  const tileSize = 64
  const tilePadding = 6
  const tileSizePre = tileSize - tilePadding * 2

  const tilesx = Math.ceil(inputDims[3] / tileSizePre)
  const tilesy = Math.ceil(inputDims[2] / tileSizePre)

  const { data } = inputTensor

  console.log(inputTensor)
  const numTiles = tilesx * tilesy
  let currentTile = 0

  for (let i = 0; i < tilesx; i++) {
    for (let j = 0; j < tilesy; j++) {
      const ti = Date.now()
      const tileW = Math.min(tileSizePre, imageW - i * tileSizePre)
      const tileH = Math.min(tileSizePre, imageH - j * tileSizePre)
      console.log(`tileW: ${tileW} tileH: ${tileH}`)
      const tileROffset = 0
      const tileGOffset = tileSize * tileSize
      const tileBOffset = tileSize * tileSize * 2

      // padding tile 转移到上面的数据上
      const tileData = new Float32Array(tileSize * tileSize * 3)
      for (let xp = -tilePadding; xp < tileSizePre + tilePadding; xp++) {
        for (let yp = -tilePadding; yp < tileSizePre + tilePadding; yp++) {
          // 计算在data中的一维坐标,防止边缘溢出
          let xim = i * tileSizePre + xp
          if (xim < 0) xim = 0
          else if (xim >= imageW) xim = imageW - 1

          // 计算在data中的一维坐标,防止边缘溢出
          let yim = j * tileSizePre + yp
          if (yim < 0) yim = 0
          else if (yim >= imageH) yim = imageH - 1

          const idx = xim + yim * imageW

          const xt = xp + tilePadding
          const yt = yp + tilePadding
          // const idx = (i * tileSize + x) + (j * tileSize + y) * imageW;
          // 主要转化到一维的坐标上,
          tileData[xt + yt * tileSize + tileROffset] = data[idx + rOffset]
          tileData[xt + yt * tileSize + tileGOffset] = data[idx + gOffset]
          tileData[xt + yt * tileSize + tileBOffset] = data[idx + bOffset]
        }
      }

      const tile = new ort.Tensor('float32', tileData, [
        1,
        3,
        tileSize,
        tileSize,
      ])
      const r = await session.run({ 'input.1': tile })
      const results = {
        output: r['1895'],
      }
      console.log(`pre dims:${results.output.dims}`)

      const outTileW = tileW * 4
      const outTileH = tileH * 4
      const outTileSize = tileSize * 4
      const outTileSizePre = tileSizePre * 4

      const outTileROffset = 0
      const outTileGOffset = outTileSize * outTileSize
      const outTileBOffset = outTileSize * outTileSize * 2

      // add tile to output,直接输出
      for (let x = 0; x < outTileW; x++) {
        for (let y = 0; y < outTileH; y++) {
          const xim = i * outTileSizePre + x
          const yim = j * outTileSizePre + y
          const idx = xim + yim * outImageW
          const xt = x + tilePadding * 4
          const yt = y + tilePadding * 4
          outputTensor.data[idx + outROffset] =
            results.output.data[xt + yt * outTileSize + outTileROffset]
          outputTensor.data[idx + outGOffset] =
            results.output.data[xt + yt * outTileSize + outTileGOffset]
          outputTensor.data[idx + outBOffset] =
            results.output.data[xt + yt * outTileSize + outTileBOffset]
        }
      }
      currentTile++
      const dt = Date.now() - ti
      const remTime = (numTiles - currentTile) * dt
      console.log(
        `tile ${currentTile} of ${numTiles} took ${dt} ms, remaining time: ${remTime} ms`
      )
      callback(Math.round(100 * (currentTile / numTiles)))
    }
  }
  console.log(`output dims:${outputTensor.dims}`)
  return outputTensor
}
function processImage(
  img: HTMLImageElement,
  canvasId?: string
): Promise<Uint8Array> {
  return new Promise((resolve, reject) => {
    try {
      const src = cv.imread(img)
      // eslint-disable-next-line camelcase
      const src_rgb = new cv.Mat()
      // 将图像从RGBA转换为RGB
      cv.cvtColor(src, src_rgb, cv.COLOR_RGBA2RGB)
      if (canvasId) {
        cv.imshow(canvasId, src_rgb)
      }
      resolve(imgProcess(src_rgb))

      src.delete()
      src_rgb.delete()
    } catch (error) {
      reject(error)
    }
  })
}
function configEnv(capabilities: {
  webgpu: any
  wasm?: boolean
  simd: any
  threads: any
}) {
  ort.env.wasm.wasmPaths =
    'https://cdn.jsdelivr.net/npm/[email protected]/dist/'
  if (capabilities.webgpu) {
    ort.env.wasm.numThreads = 1
  } else {
    if (capabilities.threads) {
      ort.env.wasm.numThreads = navigator.hardwareConcurrency ?? 4
    }
    if (capabilities.simd) {
      ort.env.wasm.simd = true
    }
    ort.env.wasm.proxy = true
  }
  console.log('env', ort.env.wasm)
}
function postProcess(floatData: Float32Array, width: number, height: number) {
  const chwToHwcData = []
  const size = width * height

  for (let h = 0; h < height; h++) {
    for (let w = 0; w < width; w++) {
      for (let c = 0; c < 3; c++) {
        // RGB通道
        const chwIndex = c * size + h * width + w
        const pixelVal = floatData[chwIndex]
        let newPiex = pixelVal
        if (pixelVal > 1) {
          newPiex = 1
        } else if (pixelVal < 0) {
          newPiex = 0
        }
        chwToHwcData.push(newPiex * 255) // 归一化反转
      }
      chwToHwcData.push(255) // Alpha通道
    }
  }
  return chwToHwcData
}

function imageDataToDataURL(imageData: ImageData) {
  // 创建 canvas
  const canvas = document.createElement('canvas')
  canvas.width = imageData.width
  canvas.height = imageData.height

  // 绘制 imageData 到 canvas
  const ctx = canvas.getContext('2d')
  ctx.putImageData(imageData, 0, 0)

  // 导出为数据 URL
  return canvas.toDataURL()
}
let model: ArrayBuffer | null = null
export default async function superResolution(
  imageFile: File | HTMLImageElement,
  callback: (progress: number) => void
) {
  console.time('sessionCreate')
  if (!model) {
    const capabilities = await getCapabilities()
    configEnv(capabilities)
    const modelBuffer = await ensureModel('superResolution')
    model = await ort.InferenceSession.create(modelBuffer, {
      executionProviders: [capabilities.webgpu ? 'webgpu' : 'wasm'],
    })
  }
  console.timeEnd('sessionCreate')

  const img =
    imageFile instanceof HTMLImageElement
      ? imageFile
      : await loadImage(URL.createObjectURL(imageFile))
  const imageTersorData = await processImage(img)
  const imageTensor = new ort.Tensor('float32', imageTersorData, [
    1,
    3,
    img.height,
    img.width,
  ])

  const result = await tileProc(imageTensor, model, callback)
  console.time('postProcess')
  const outsTensor = result
  const chwToHwcData = postProcess(
    outsTensor.data,
    img.width * 4,
    img.height * 4
  )
  const imageData = new ImageData(
    new Uint8ClampedArray(chwToHwcData),
    img.width * 4,
    img.height * 4
  )
  console.log(imageData, 'imageData')
  const url = imageDataToDataURL(imageData)
  console.timeEnd('postProcess')

  return url
}