Spaces:
Running
Running
File size: 8,923 Bytes
a62d4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
/* eslint-disable no-console */
/* eslint-disable no-plusplus */
import cv, { Mat } from 'opencv-ts'
import { getCapabilities } from './util'
import { ensureModel } from './cache'
function loadImage(url: string): Promise<HTMLImageElement> {
return new Promise((resolve, reject) => {
const img = new Image()
img.crossOrigin = 'Anonymous'
img.onload = () => resolve(img)
img.onerror = () => reject(new Error(`Failed to load image from ${url}`))
img.src = url
})
}
function imgProcess(img: Mat) {
const channels = new cv.MatVector()
cv.split(img, channels) // 分割通道
const C = channels.size() // 通道数
const H = img.rows // 图像高度
const W = img.cols // 图像宽度
const chwArray = new Float32Array(C * H * W) // 创建新的数组来存储转换后的数据
for (let c = 0; c < C; c++) {
const channelData = channels.get(c).data // 获取单个通道的数据
for (let h = 0; h < H; h++) {
for (let w = 0; w < W; w++) {
chwArray[c * H * W + h * W + w] = channelData[h * W + w] / 255.0
// chwArray[c * H * W + h * W + w] = channelData[h * W + w]
}
}
}
channels.delete() // 清理内存
return chwArray // 返回转换后的数据
}
async function tileProc(
inputTensor: ort.Tensor,
session: ort.InferenceSession,
callback: (progress: number) => void
) {
const inputDims = inputTensor.dims
const imageW = inputDims[3]
const imageH = inputDims[2]
const rOffset = 0
const gOffset = imageW * imageH
const bOffset = imageW * imageH * 2
const outputDims = [
inputDims[0],
inputDims[1],
inputDims[2] * 4,
inputDims[3] * 4,
]
const outputTensor = new ort.Tensor(
'float32',
new Float32Array(
outputDims[0] * outputDims[1] * outputDims[2] * outputDims[3]
),
outputDims
)
const outImageW = outputDims[3]
const outImageH = outputDims[2]
const outROffset = 0
const outGOffset = outImageW * outImageH
const outBOffset = outImageW * outImageH * 2
const tileSize = 64
const tilePadding = 6
const tileSizePre = tileSize - tilePadding * 2
const tilesx = Math.ceil(inputDims[3] / tileSizePre)
const tilesy = Math.ceil(inputDims[2] / tileSizePre)
const { data } = inputTensor
console.log(inputTensor)
const numTiles = tilesx * tilesy
let currentTile = 0
for (let i = 0; i < tilesx; i++) {
for (let j = 0; j < tilesy; j++) {
const ti = Date.now()
const tileW = Math.min(tileSizePre, imageW - i * tileSizePre)
const tileH = Math.min(tileSizePre, imageH - j * tileSizePre)
console.log(`tileW: ${tileW} tileH: ${tileH}`)
const tileROffset = 0
const tileGOffset = tileSize * tileSize
const tileBOffset = tileSize * tileSize * 2
// padding tile 转移到上面的数据上
const tileData = new Float32Array(tileSize * tileSize * 3)
for (let xp = -tilePadding; xp < tileSizePre + tilePadding; xp++) {
for (let yp = -tilePadding; yp < tileSizePre + tilePadding; yp++) {
// 计算在data中的一维坐标,防止边缘溢出
let xim = i * tileSizePre + xp
if (xim < 0) xim = 0
else if (xim >= imageW) xim = imageW - 1
// 计算在data中的一维坐标,防止边缘溢出
let yim = j * tileSizePre + yp
if (yim < 0) yim = 0
else if (yim >= imageH) yim = imageH - 1
const idx = xim + yim * imageW
const xt = xp + tilePadding
const yt = yp + tilePadding
// const idx = (i * tileSize + x) + (j * tileSize + y) * imageW;
// 主要转化到一维的坐标上,
tileData[xt + yt * tileSize + tileROffset] = data[idx + rOffset]
tileData[xt + yt * tileSize + tileGOffset] = data[idx + gOffset]
tileData[xt + yt * tileSize + tileBOffset] = data[idx + bOffset]
}
}
const tile = new ort.Tensor('float32', tileData, [
1,
3,
tileSize,
tileSize,
])
const r = await session.run({ 'input.1': tile })
const results = {
output: r['1895'],
}
console.log(`pre dims:${results.output.dims}`)
const outTileW = tileW * 4
const outTileH = tileH * 4
const outTileSize = tileSize * 4
const outTileSizePre = tileSizePre * 4
const outTileROffset = 0
const outTileGOffset = outTileSize * outTileSize
const outTileBOffset = outTileSize * outTileSize * 2
// add tile to output,直接输出
for (let x = 0; x < outTileW; x++) {
for (let y = 0; y < outTileH; y++) {
const xim = i * outTileSizePre + x
const yim = j * outTileSizePre + y
const idx = xim + yim * outImageW
const xt = x + tilePadding * 4
const yt = y + tilePadding * 4
outputTensor.data[idx + outROffset] =
results.output.data[xt + yt * outTileSize + outTileROffset]
outputTensor.data[idx + outGOffset] =
results.output.data[xt + yt * outTileSize + outTileGOffset]
outputTensor.data[idx + outBOffset] =
results.output.data[xt + yt * outTileSize + outTileBOffset]
}
}
currentTile++
const dt = Date.now() - ti
const remTime = (numTiles - currentTile) * dt
console.log(
`tile ${currentTile} of ${numTiles} took ${dt} ms, remaining time: ${remTime} ms`
)
callback(Math.round(100 * (currentTile / numTiles)))
}
}
console.log(`output dims:${outputTensor.dims}`)
return outputTensor
}
function processImage(
img: HTMLImageElement,
canvasId?: string
): Promise<Uint8Array> {
return new Promise((resolve, reject) => {
try {
const src = cv.imread(img)
// eslint-disable-next-line camelcase
const src_rgb = new cv.Mat()
// 将图像从RGBA转换为RGB
cv.cvtColor(src, src_rgb, cv.COLOR_RGBA2RGB)
if (canvasId) {
cv.imshow(canvasId, src_rgb)
}
resolve(imgProcess(src_rgb))
src.delete()
src_rgb.delete()
} catch (error) {
reject(error)
}
})
}
function configEnv(capabilities: {
webgpu: any
wasm?: boolean
simd: any
threads: any
}) {
ort.env.wasm.wasmPaths =
'https://cdn.jsdelivr.net/npm/[email protected]/dist/'
if (capabilities.webgpu) {
ort.env.wasm.numThreads = 1
} else {
if (capabilities.threads) {
ort.env.wasm.numThreads = navigator.hardwareConcurrency ?? 4
}
if (capabilities.simd) {
ort.env.wasm.simd = true
}
ort.env.wasm.proxy = true
}
console.log('env', ort.env.wasm)
}
function postProcess(floatData: Float32Array, width: number, height: number) {
const chwToHwcData = []
const size = width * height
for (let h = 0; h < height; h++) {
for (let w = 0; w < width; w++) {
for (let c = 0; c < 3; c++) {
// RGB通道
const chwIndex = c * size + h * width + w
const pixelVal = floatData[chwIndex]
let newPiex = pixelVal
if (pixelVal > 1) {
newPiex = 1
} else if (pixelVal < 0) {
newPiex = 0
}
chwToHwcData.push(newPiex * 255) // 归一化反转
}
chwToHwcData.push(255) // Alpha通道
}
}
return chwToHwcData
}
function imageDataToDataURL(imageData: ImageData) {
// 创建 canvas
const canvas = document.createElement('canvas')
canvas.width = imageData.width
canvas.height = imageData.height
// 绘制 imageData 到 canvas
const ctx = canvas.getContext('2d')
ctx.putImageData(imageData, 0, 0)
// 导出为数据 URL
return canvas.toDataURL()
}
let model: ArrayBuffer | null = null
export default async function superResolution(
imageFile: File | HTMLImageElement,
callback: (progress: number) => void
) {
console.time('sessionCreate')
if (!model) {
const capabilities = await getCapabilities()
configEnv(capabilities)
const modelBuffer = await ensureModel('superResolution')
model = await ort.InferenceSession.create(modelBuffer, {
executionProviders: [capabilities.webgpu ? 'webgpu' : 'wasm'],
})
}
console.timeEnd('sessionCreate')
const img =
imageFile instanceof HTMLImageElement
? imageFile
: await loadImage(URL.createObjectURL(imageFile))
const imageTersorData = await processImage(img)
const imageTensor = new ort.Tensor('float32', imageTersorData, [
1,
3,
img.height,
img.width,
])
const result = await tileProc(imageTensor, model, callback)
console.time('postProcess')
const outsTensor = result
const chwToHwcData = postProcess(
outsTensor.data,
img.width * 4,
img.height * 4
)
const imageData = new ImageData(
new Uint8ClampedArray(chwToHwcData),
img.width * 4,
img.height * 4
)
console.log(imageData, 'imageData')
const url = imageDataToDataURL(imageData)
console.timeEnd('postProcess')
return url
}
|