Spaces:
Configuration error
Configuration error
unknown
commited on
Commit
·
1bbec4a
1
Parent(s):
2a844ae
add 8bit and fix some value
Browse files
src/f5_tts/train/finetune_cli.py
CHANGED
@@ -13,6 +13,9 @@ from importlib.resources import files
|
|
13 |
target_sample_rate = 24000
|
14 |
n_mel_channels = 100
|
15 |
hop_length = 256
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
# -------------------------- Argument Parsing --------------------------- #
|
@@ -40,7 +43,7 @@ def parse_args():
|
|
40 |
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch")
|
41 |
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
42 |
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
43 |
-
parser.add_argument("--epochs", type=int, default=
|
44 |
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup steps")
|
45 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps")
|
46 |
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps")
|
@@ -121,11 +124,15 @@ def main():
|
|
121 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
122 |
|
123 |
print("\nvocab : ", vocab_size)
|
|
|
124 |
|
125 |
mel_spec_kwargs = dict(
|
126 |
-
|
127 |
-
n_mel_channels=n_mel_channels,
|
128 |
hop_length=hop_length,
|
|
|
|
|
|
|
|
|
129 |
)
|
130 |
|
131 |
model = CFM(
|
|
|
13 |
target_sample_rate = 24000
|
14 |
n_mel_channels = 100
|
15 |
hop_length = 256
|
16 |
+
win_length = 1024
|
17 |
+
n_fft = 1024
|
18 |
+
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
19 |
|
20 |
|
21 |
# -------------------------- Argument Parsing --------------------------- #
|
|
|
43 |
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch")
|
44 |
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
45 |
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
46 |
+
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
|
47 |
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup steps")
|
48 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps")
|
49 |
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps")
|
|
|
124 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
125 |
|
126 |
print("\nvocab : ", vocab_size)
|
127 |
+
print("\nvocoder : ", mel_spec_type)
|
128 |
|
129 |
mel_spec_kwargs = dict(
|
130 |
+
n_fft=n_fft,
|
|
|
131 |
hop_length=hop_length,
|
132 |
+
win_length=win_length,
|
133 |
+
n_mel_channels=n_mel_channels,
|
134 |
+
target_sample_rate=target_sample_rate,
|
135 |
+
mel_spec_type=mel_spec_type,
|
136 |
)
|
137 |
|
138 |
model = CFM(
|
src/f5_tts/train/finetune_gradio.py
CHANGED
@@ -43,6 +43,13 @@ last_ema = None
|
|
43 |
|
44 |
path_data = str(files("f5_tts").joinpath("../../data"))
|
45 |
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
file_train = "src/f5_tts/train/finetune_cli.py"
|
47 |
|
48 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
@@ -70,6 +77,7 @@ def save_settings(
|
|
70 |
tokenizer_file,
|
71 |
mixed_precision,
|
72 |
logger,
|
|
|
73 |
):
|
74 |
path_project = os.path.join(path_project_ckpts, project_name)
|
75 |
os.makedirs(path_project, exist_ok=True)
|
@@ -93,6 +101,7 @@ def save_settings(
|
|
93 |
"tokenizer_file": tokenizer_file,
|
94 |
"mixed_precision": mixed_precision,
|
95 |
"logger": logger,
|
|
|
96 |
}
|
97 |
with open(file_setting, "w") as f:
|
98 |
json.dump(settings, f, indent=4)
|
@@ -124,6 +133,7 @@ def load_settings(project_name):
|
|
124 |
"tokenizer_file": "",
|
125 |
"mixed_precision": "none",
|
126 |
"logger": "wandb",
|
|
|
127 |
}
|
128 |
return (
|
129 |
settings["exp_name"],
|
@@ -143,12 +153,15 @@ def load_settings(project_name):
|
|
143 |
settings["tokenizer_file"],
|
144 |
settings["mixed_precision"],
|
145 |
settings["logger"],
|
|
|
146 |
)
|
147 |
|
148 |
with open(file_setting, "r") as f:
|
149 |
settings = json.load(f)
|
150 |
if "logger" not in settings:
|
151 |
settings["logger"] = "wandb"
|
|
|
|
|
152 |
return (
|
153 |
settings["exp_name"],
|
154 |
settings["learning_rate"],
|
@@ -167,6 +180,7 @@ def load_settings(project_name):
|
|
167 |
settings["tokenizer_file"],
|
168 |
settings["mixed_precision"],
|
169 |
settings["logger"],
|
|
|
170 |
)
|
171 |
|
172 |
|
@@ -381,6 +395,7 @@ def start_training(
|
|
381 |
mixed_precision="fp16",
|
382 |
stream=False,
|
383 |
logger="wandb",
|
|
|
384 |
):
|
385 |
global training_process, tts_api, stop_signal, pipe
|
386 |
|
@@ -447,11 +462,10 @@ def start_training(
|
|
447 |
f"--dataset_name {dataset_name}"
|
448 |
)
|
449 |
|
450 |
-
|
451 |
-
cmd += f" --finetune {finetune}"
|
452 |
|
453 |
if file_checkpoint_train != "":
|
454 |
-
cmd += f" --
|
455 |
|
456 |
if tokenizer_file != "":
|
457 |
cmd += f" --tokenizer_path {tokenizer_file}"
|
@@ -460,7 +474,10 @@ def start_training(
|
|
460 |
|
461 |
cmd += f" --log_samples True --logger {logger} "
|
462 |
|
463 |
-
|
|
|
|
|
|
|
464 |
|
465 |
save_settings(
|
466 |
dataset_name,
|
@@ -481,6 +498,7 @@ def start_training(
|
|
481 |
tokenizer_file,
|
482 |
mixed_precision,
|
483 |
logger,
|
|
|
484 |
)
|
485 |
|
486 |
try:
|
@@ -758,11 +776,9 @@ def get_correct_audio_path(
|
|
758 |
# Case 2: If it has a supported extension but is not a full path
|
759 |
elif has_supported_extension(audio_input) and not os.path.isabs(audio_input):
|
760 |
file_audio = os.path.join(base_path, audio_input)
|
761 |
-
print("2")
|
762 |
|
763 |
# Case 3: If only the name is given (no extension and not a full path)
|
764 |
elif not has_supported_extension(audio_input) and not os.path.isabs(audio_input):
|
765 |
-
print("3")
|
766 |
for ext in supported_formats:
|
767 |
potential_file = os.path.join(base_path, f"{audio_input}.{ext}")
|
768 |
if os.path.exists(potential_file):
|
@@ -773,6 +789,18 @@ def get_correct_audio_path(
|
|
773 |
return file_audio
|
774 |
|
775 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
777 |
path_project = os.path.join(path_data, name_project)
|
778 |
path_project_wavs = os.path.join(path_project, "wavs")
|
@@ -816,9 +844,12 @@ def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
|
816 |
continue
|
817 |
|
818 |
if duration < 1 or duration > 25:
|
819 |
-
|
|
|
|
|
|
|
820 |
continue
|
821 |
-
if len(text) <
|
822 |
error_files.append([file_audio, "very small text len 3"])
|
823 |
continue
|
824 |
|
@@ -1208,7 +1239,9 @@ def get_random_sample_infer(project_name):
|
|
1208 |
)
|
1209 |
|
1210 |
|
1211 |
-
def infer(
|
|
|
|
|
1212 |
global last_checkpoint, last_device, tts_api, last_ema
|
1213 |
|
1214 |
if not os.path.isfile(file_checkpoint):
|
@@ -1238,8 +1271,17 @@ def infer(project, file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe
|
|
1238 |
print("update >> ", device_test, file_checkpoint, use_ema)
|
1239 |
|
1240 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
1241 |
-
tts_api.infer(
|
1242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1243 |
|
1244 |
|
1245 |
def check_finetune(finetune):
|
@@ -1506,6 +1548,7 @@ Skip this step if you have your dataset, raw.arrow, duration.json, and vocab.txt
|
|
1506 |
```"""
|
1507 |
)
|
1508 |
ch_tokenizern = gr.Checkbox(label="Create Vocabulary", value=False, visible=False)
|
|
|
1509 |
bt_prepare = bt_create = gr.Button("Prepare")
|
1510 |
txt_info_prepare = gr.Text(label="Info", value="")
|
1511 |
txt_vocab_prepare = gr.Text(label="Vocab", value="")
|
@@ -1560,6 +1603,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1560 |
last_per_steps = gr.Number(label="Last per Steps", value=100)
|
1561 |
|
1562 |
with gr.Row():
|
|
|
1563 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "bf16"], value="none")
|
1564 |
cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
|
1565 |
start_button = gr.Button("Start Training")
|
@@ -1584,6 +1628,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1584 |
tokenizer_filev,
|
1585 |
mixed_precisionv,
|
1586 |
cd_loggerv,
|
|
|
1587 |
) = load_settings(projects_selelect)
|
1588 |
exp_name.value = exp_namev
|
1589 |
learning_rate.value = learning_ratev
|
@@ -1602,6 +1647,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1602 |
tokenizer_file.value = tokenizer_filev
|
1603 |
mixed_precision.value = mixed_precisionv
|
1604 |
cd_logger.value = cd_loggerv
|
|
|
1605 |
|
1606 |
ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
|
1607 |
txt_info_train = gr.Text(label="Info", value="")
|
@@ -1660,6 +1706,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1660 |
mixed_precision,
|
1661 |
ch_stream,
|
1662 |
cd_logger,
|
|
|
1663 |
],
|
1664 |
outputs=[txt_info_train, start_button, stop_button],
|
1665 |
)
|
@@ -1732,12 +1779,17 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1732 |
|
1733 |
with gr.TabItem("Test Model"):
|
1734 |
gr.Markdown("""```plaintext
|
1735 |
-
SOS: Check the use_ema setting (True or False) for your model to see what works best for you.
|
1736 |
```""")
|
1737 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
1738 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
1739 |
|
1740 |
-
|
|
|
|
|
|
|
|
|
|
|
1741 |
ch_use_ema = gr.Checkbox(label="Use EMA", value=True)
|
1742 |
with gr.Row():
|
1743 |
cm_checkpoint = gr.Dropdown(
|
@@ -1757,14 +1809,27 @@ SOS: Check the use_ema setting (True or False) for your model to see what works
|
|
1757 |
|
1758 |
with gr.Row():
|
1759 |
txt_info_gpu = gr.Textbox("", label="Device")
|
|
|
1760 |
check_button_infer = gr.Button("Infer")
|
1761 |
|
1762 |
gen_audio = gr.Audio(label="Audio Gen", type="filepath")
|
1763 |
|
1764 |
check_button_infer.click(
|
1765 |
fn=infer,
|
1766 |
-
inputs=[
|
1767 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1768 |
)
|
1769 |
|
1770 |
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
|
|
43 |
|
44 |
path_data = str(files("f5_tts").joinpath("../../data"))
|
45 |
path_project_ckpts = str(files("f5_tts").joinpath("../../ckpts"))
|
46 |
+
|
47 |
+
from pathlib import Path
|
48 |
+
|
49 |
+
base_path = Path(__file__).resolve().parent.parent.parent.parent
|
50 |
+
path_data = str(base_path / "data")
|
51 |
+
path_project_ckpts = str(base_path / "ckpts")
|
52 |
+
|
53 |
file_train = "src/f5_tts/train/finetune_cli.py"
|
54 |
|
55 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
|
77 |
tokenizer_file,
|
78 |
mixed_precision,
|
79 |
logger,
|
80 |
+
ch_8bit_adam,
|
81 |
):
|
82 |
path_project = os.path.join(path_project_ckpts, project_name)
|
83 |
os.makedirs(path_project, exist_ok=True)
|
|
|
101 |
"tokenizer_file": tokenizer_file,
|
102 |
"mixed_precision": mixed_precision,
|
103 |
"logger": logger,
|
104 |
+
"bnb_optimizer": ch_8bit_adam,
|
105 |
}
|
106 |
with open(file_setting, "w") as f:
|
107 |
json.dump(settings, f, indent=4)
|
|
|
133 |
"tokenizer_file": "",
|
134 |
"mixed_precision": "none",
|
135 |
"logger": "wandb",
|
136 |
+
"bnb_optimizer": False,
|
137 |
}
|
138 |
return (
|
139 |
settings["exp_name"],
|
|
|
153 |
settings["tokenizer_file"],
|
154 |
settings["mixed_precision"],
|
155 |
settings["logger"],
|
156 |
+
settings["bnb_optimizer"],
|
157 |
)
|
158 |
|
159 |
with open(file_setting, "r") as f:
|
160 |
settings = json.load(f)
|
161 |
if "logger" not in settings:
|
162 |
settings["logger"] = "wandb"
|
163 |
+
if "bnb_optimizer" not in settings:
|
164 |
+
settings["bnb_optimizer"] = False
|
165 |
return (
|
166 |
settings["exp_name"],
|
167 |
settings["learning_rate"],
|
|
|
180 |
settings["tokenizer_file"],
|
181 |
settings["mixed_precision"],
|
182 |
settings["logger"],
|
183 |
+
settings["bnb_optimizer"],
|
184 |
)
|
185 |
|
186 |
|
|
|
395 |
mixed_precision="fp16",
|
396 |
stream=False,
|
397 |
logger="wandb",
|
398 |
+
ch_8bit_adam=False,
|
399 |
):
|
400 |
global training_process, tts_api, stop_signal, pipe
|
401 |
|
|
|
462 |
f"--dataset_name {dataset_name}"
|
463 |
)
|
464 |
|
465 |
+
cmd += f" --finetune {finetune}"
|
|
|
466 |
|
467 |
if file_checkpoint_train != "":
|
468 |
+
cmd += f" --pretrain {file_checkpoint_train}"
|
469 |
|
470 |
if tokenizer_file != "":
|
471 |
cmd += f" --tokenizer_path {tokenizer_file}"
|
|
|
474 |
|
475 |
cmd += f" --log_samples True --logger {logger} "
|
476 |
|
477 |
+
if ch_8bit_adam:
|
478 |
+
cmd += " --bnb_optimizer True "
|
479 |
+
|
480 |
+
print("run command : \n" + cmd + "\n")
|
481 |
|
482 |
save_settings(
|
483 |
dataset_name,
|
|
|
498 |
tokenizer_file,
|
499 |
mixed_precision,
|
500 |
logger,
|
501 |
+
ch_8bit_adam,
|
502 |
)
|
503 |
|
504 |
try:
|
|
|
776 |
# Case 2: If it has a supported extension but is not a full path
|
777 |
elif has_supported_extension(audio_input) and not os.path.isabs(audio_input):
|
778 |
file_audio = os.path.join(base_path, audio_input)
|
|
|
779 |
|
780 |
# Case 3: If only the name is given (no extension and not a full path)
|
781 |
elif not has_supported_extension(audio_input) and not os.path.isabs(audio_input):
|
|
|
782 |
for ext in supported_formats:
|
783 |
potential_file = os.path.join(base_path, f"{audio_input}.{ext}")
|
784 |
if os.path.exists(potential_file):
|
|
|
789 |
return file_audio
|
790 |
|
791 |
|
792 |
+
def get_nested_value(data, format):
|
793 |
+
keys = format.split("/")
|
794 |
+
|
795 |
+
item = data
|
796 |
+
for key in keys:
|
797 |
+
item = item.get(key)
|
798 |
+
if item is None:
|
799 |
+
return None
|
800 |
+
|
801 |
+
return item
|
802 |
+
|
803 |
+
|
804 |
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
|
805 |
path_project = os.path.join(path_data, name_project)
|
806 |
path_project_wavs = os.path.join(path_project, "wavs")
|
|
|
844 |
continue
|
845 |
|
846 |
if duration < 1 or duration > 25:
|
847 |
+
if duration > 25:
|
848 |
+
error_files.append([file_audio, "duration > 25 sec"])
|
849 |
+
if duration < 1:
|
850 |
+
error_files.append([file_audio, "duration < 1 sec "])
|
851 |
continue
|
852 |
+
if len(text) < 3:
|
853 |
error_files.append([file_audio, "very small text len 3"])
|
854 |
continue
|
855 |
|
|
|
1239 |
)
|
1240 |
|
1241 |
|
1242 |
+
def infer(
|
1243 |
+
project, file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step, use_ema, speed, seed, remove_silence
|
1244 |
+
):
|
1245 |
global last_checkpoint, last_device, tts_api, last_ema
|
1246 |
|
1247 |
if not os.path.isfile(file_checkpoint):
|
|
|
1271 |
print("update >> ", device_test, file_checkpoint, use_ema)
|
1272 |
|
1273 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
1274 |
+
tts_api.infer(
|
1275 |
+
gen_text=gen_text.lower().strip(),
|
1276 |
+
ref_text=ref_text.lower().strip(),
|
1277 |
+
ref_file=ref_audio,
|
1278 |
+
nfe_step=nfe_step,
|
1279 |
+
file_wave=f.name,
|
1280 |
+
speed=speed,
|
1281 |
+
seed=seed,
|
1282 |
+
remove_silence=remove_silence,
|
1283 |
+
)
|
1284 |
+
return f.name, tts_api.device, str(tts_api.seed)
|
1285 |
|
1286 |
|
1287 |
def check_finetune(finetune):
|
|
|
1548 |
```"""
|
1549 |
)
|
1550 |
ch_tokenizern = gr.Checkbox(label="Create Vocabulary", value=False, visible=False)
|
1551 |
+
|
1552 |
bt_prepare = bt_create = gr.Button("Prepare")
|
1553 |
txt_info_prepare = gr.Text(label="Info", value="")
|
1554 |
txt_vocab_prepare = gr.Text(label="Vocab", value="")
|
|
|
1603 |
last_per_steps = gr.Number(label="Last per Steps", value=100)
|
1604 |
|
1605 |
with gr.Row():
|
1606 |
+
ch_8bit_adam = gr.Checkbox(label="Use 8-bit Adam optimizer")
|
1607 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "bf16"], value="none")
|
1608 |
cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
|
1609 |
start_button = gr.Button("Start Training")
|
|
|
1628 |
tokenizer_filev,
|
1629 |
mixed_precisionv,
|
1630 |
cd_loggerv,
|
1631 |
+
ch_8bit_adamv,
|
1632 |
) = load_settings(projects_selelect)
|
1633 |
exp_name.value = exp_namev
|
1634 |
learning_rate.value = learning_ratev
|
|
|
1647 |
tokenizer_file.value = tokenizer_filev
|
1648 |
mixed_precision.value = mixed_precisionv
|
1649 |
cd_logger.value = cd_loggerv
|
1650 |
+
ch_8bit_adam.value = ch_8bit_adamv
|
1651 |
|
1652 |
ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
|
1653 |
txt_info_train = gr.Text(label="Info", value="")
|
|
|
1706 |
mixed_precision,
|
1707 |
ch_stream,
|
1708 |
cd_logger,
|
1709 |
+
ch_8bit_adam,
|
1710 |
],
|
1711 |
outputs=[txt_info_train, start_button, stop_button],
|
1712 |
)
|
|
|
1779 |
|
1780 |
with gr.TabItem("Test Model"):
|
1781 |
gr.Markdown("""```plaintext
|
1782 |
+
SOS: Check the use_ema setting (True or False) for your model to see what works best for you. use seed -1 from random
|
1783 |
```""")
|
1784 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
1785 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
1786 |
|
1787 |
+
with gr.Row():
|
1788 |
+
nfe_step = gr.Number(label="NFE Step", value=32)
|
1789 |
+
speed = gr.Slider(label="Speed", value=1.0, minimum=0.3, maximum=2.0, step=0.1)
|
1790 |
+
seed = gr.Number(label="Seed", value=-1, minimum=-1)
|
1791 |
+
remove_silence = gr.Checkbox(label="Remove Silence")
|
1792 |
+
|
1793 |
ch_use_ema = gr.Checkbox(label="Use EMA", value=True)
|
1794 |
with gr.Row():
|
1795 |
cm_checkpoint = gr.Dropdown(
|
|
|
1809 |
|
1810 |
with gr.Row():
|
1811 |
txt_info_gpu = gr.Textbox("", label="Device")
|
1812 |
+
seed_info = gr.Text(label="Seed :")
|
1813 |
check_button_infer = gr.Button("Infer")
|
1814 |
|
1815 |
gen_audio = gr.Audio(label="Audio Gen", type="filepath")
|
1816 |
|
1817 |
check_button_infer.click(
|
1818 |
fn=infer,
|
1819 |
+
inputs=[
|
1820 |
+
cm_project,
|
1821 |
+
cm_checkpoint,
|
1822 |
+
exp_name,
|
1823 |
+
ref_text,
|
1824 |
+
ref_audio,
|
1825 |
+
gen_text,
|
1826 |
+
nfe_step,
|
1827 |
+
ch_use_ema,
|
1828 |
+
speed,
|
1829 |
+
seed,
|
1830 |
+
remove_silence,
|
1831 |
+
],
|
1832 |
+
outputs=[gen_audio, txt_info_gpu, seed_info],
|
1833 |
)
|
1834 |
|
1835 |
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|