Spaces:
Configuration error
Configuration error
Merge branch 'main' of github.com:lpscr/F5-TTS into lpscr-main
Browse files- src/f5_tts/model/trainer.py +97 -14
- src/f5_tts/model/utils.py +74 -0
- src/f5_tts/train/finetune_cli.py +11 -0
- src/f5_tts/train/finetune_gradio.py +91 -0
src/f5_tts/model/trainer.py
CHANGED
@@ -3,7 +3,7 @@ from __future__ import annotations
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
-
|
7 |
|
8 |
import torch
|
9 |
from torch.optim import AdamW
|
@@ -19,7 +19,6 @@ from f5_tts.model import CFM
|
|
19 |
from f5_tts.model.utils import exists, default
|
20 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
21 |
|
22 |
-
|
23 |
# trainer
|
24 |
|
25 |
|
@@ -39,6 +38,8 @@ class Trainer:
|
|
39 |
max_grad_norm=1.0,
|
40 |
noise_scheduler: str | None = None,
|
41 |
duration_predictor: torch.nn.Module | None = None,
|
|
|
|
|
42 |
wandb_project="test_e2-tts",
|
43 |
wandb_run_name="test_run",
|
44 |
wandb_resume_id: str = None,
|
@@ -46,24 +47,29 @@ class Trainer:
|
|
46 |
accelerate_kwargs: dict = dict(),
|
47 |
ema_kwargs: dict = dict(),
|
48 |
bnb_optimizer: bool = False,
|
|
|
49 |
):
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
print(f"Using logger: {logger}")
|
54 |
|
55 |
-
self.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
if logger == "wandb":
|
63 |
if exists(wandb_resume_id):
|
64 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
65 |
else:
|
66 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
|
|
67 |
self.accelerator.init_trackers(
|
68 |
project_name=wandb_project,
|
69 |
init_kwargs=init_kwargs,
|
@@ -80,12 +86,29 @@ class Trainer:
|
|
80 |
"noise_scheduler": noise_scheduler,
|
81 |
},
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
self.model = model
|
85 |
|
86 |
if self.is_main:
|
87 |
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
88 |
-
|
89 |
self.ema_model.to(self.accelerator.device)
|
90 |
|
91 |
self.epochs = epochs
|
@@ -175,7 +198,32 @@ class Trainer:
|
|
175 |
gc.collect()
|
176 |
return step
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
if exists(resumable_with_seed):
|
180 |
generator = torch.Generator()
|
181 |
generator.manual_seed(resumable_with_seed)
|
@@ -259,6 +307,7 @@ class Trainer:
|
|
259 |
for batch in progress_bar:
|
260 |
with self.accelerator.accumulate(self.model):
|
261 |
text_inputs = batch["text"]
|
|
|
262 |
mel_spec = batch["mel"].permute(0, 2, 1)
|
263 |
mel_lengths = batch["mel_lengths"]
|
264 |
|
@@ -270,6 +319,40 @@ class Trainer:
|
|
270 |
loss, cond, pred = self.model(
|
271 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
272 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
self.accelerator.backward(loss)
|
274 |
|
275 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
@@ -285,7 +368,7 @@ class Trainer:
|
|
285 |
global_step += 1
|
286 |
|
287 |
if self.accelerator.is_local_main_process:
|
288 |
-
self.
|
289 |
|
290 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
291 |
|
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
+
|
7 |
|
8 |
import torch
|
9 |
from torch.optim import AdamW
|
|
|
19 |
from f5_tts.model.utils import exists, default
|
20 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
21 |
|
|
|
22 |
# trainer
|
23 |
|
24 |
|
|
|
38 |
max_grad_norm=1.0,
|
39 |
noise_scheduler: str | None = None,
|
40 |
duration_predictor: torch.nn.Module | None = None,
|
41 |
+
logger: str = "wandb", # Add logger parameter wandb,tensorboard , none
|
42 |
+
log_dir: str = "logs", # Add log directory parameter
|
43 |
wandb_project="test_e2-tts",
|
44 |
wandb_run_name="test_run",
|
45 |
wandb_resume_id: str = None,
|
|
|
47 |
accelerate_kwargs: dict = dict(),
|
48 |
ema_kwargs: dict = dict(),
|
49 |
bnb_optimizer: bool = False,
|
50 |
+
export_samples=False,
|
51 |
):
|
52 |
+
# export audio and mel
|
53 |
+
self.export_samples = export_samples
|
54 |
+
if export_samples:
|
55 |
+
self.path_ckpts_project = checkpoint_path
|
56 |
|
57 |
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
|
|
58 |
|
59 |
+
self.logger = logger
|
60 |
+
if self.logger == "wandb":
|
61 |
+
self.accelerator = Accelerator(
|
62 |
+
log_with="wandb",
|
63 |
+
kwargs_handlers=[ddp_kwargs],
|
64 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
65 |
+
**accelerate_kwargs,
|
66 |
+
)
|
67 |
|
|
|
68 |
if exists(wandb_resume_id):
|
69 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
70 |
else:
|
71 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
72 |
+
|
73 |
self.accelerator.init_trackers(
|
74 |
project_name=wandb_project,
|
75 |
init_kwargs=init_kwargs,
|
|
|
86 |
"noise_scheduler": noise_scheduler,
|
87 |
},
|
88 |
)
|
89 |
+
elif self.logger == "tensorboard":
|
90 |
+
from torch.utils.tensorboard import SummaryWriter
|
91 |
+
|
92 |
+
self.accelerator = Accelerator(
|
93 |
+
kwargs_handlers=[ddp_kwargs],
|
94 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
95 |
+
**accelerate_kwargs,
|
96 |
+
)
|
97 |
+
if self.is_main:
|
98 |
+
path_log_dir = os.path.join(log_dir, wandb_project)
|
99 |
+
os.makedirs(path_log_dir, exist_ok=True)
|
100 |
+
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
|
101 |
+
next_number = len(existing_folders) + 2
|
102 |
+
folder_name = f"exp{next_number}"
|
103 |
+
folder_path = os.path.join(path_log_dir, folder_name)
|
104 |
+
os.makedirs(folder_path, exist_ok=True)
|
105 |
+
|
106 |
+
self.writer = SummaryWriter(log_dir=folder_path)
|
107 |
|
108 |
self.model = model
|
109 |
|
110 |
if self.is_main:
|
111 |
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
|
|
112 |
self.ema_model.to(self.accelerator.device)
|
113 |
|
114 |
self.epochs = epochs
|
|
|
198 |
gc.collect()
|
199 |
return step
|
200 |
|
201 |
+
def log(self, metrics, step):
|
202 |
+
"""Unified logging method for both WandB and TensorBoard"""
|
203 |
+
if self.logger == "none":
|
204 |
+
return
|
205 |
+
if self.logger == "wandb":
|
206 |
+
self.accelerator.log(metrics, step=step)
|
207 |
+
elif self.is_main:
|
208 |
+
for key, value in metrics.items():
|
209 |
+
self.writer.add_scalar(key, value, step)
|
210 |
+
|
211 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
212 |
+
# import only when export_sample True
|
213 |
+
if self.export_samples:
|
214 |
+
from f5_tts.infer.utils_infer import (
|
215 |
+
target_sample_rate,
|
216 |
+
hop_length,
|
217 |
+
nfe_step,
|
218 |
+
cfg_strength,
|
219 |
+
sway_sampling_coef,
|
220 |
+
vocos,
|
221 |
+
)
|
222 |
+
from f5_tts.model.utils import get_sample
|
223 |
+
|
224 |
+
self.file_path_samples = os.path.join(self.path_ckpts_project, "samples")
|
225 |
+
os.makedirs(self.file_path_samples, exist_ok=True)
|
226 |
+
|
227 |
if exists(resumable_with_seed):
|
228 |
generator = torch.Generator()
|
229 |
generator.manual_seed(resumable_with_seed)
|
|
|
307 |
for batch in progress_bar:
|
308 |
with self.accelerator.accumulate(self.model):
|
309 |
text_inputs = batch["text"]
|
310 |
+
|
311 |
mel_spec = batch["mel"].permute(0, 2, 1)
|
312 |
mel_lengths = batch["mel_lengths"]
|
313 |
|
|
|
319 |
loss, cond, pred = self.model(
|
320 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
321 |
)
|
322 |
+
|
323 |
+
# save 4 audio per save step
|
324 |
+
if (
|
325 |
+
self.accelerator.is_local_main_process
|
326 |
+
and self.export_samples
|
327 |
+
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
|
328 |
+
):
|
329 |
+
try:
|
330 |
+
wave_org, wave_gen, mel_org, mel_gen = get_sample(
|
331 |
+
vocos,
|
332 |
+
self.model,
|
333 |
+
self.file_path_samples,
|
334 |
+
global_step,
|
335 |
+
batch["mel"][0],
|
336 |
+
text_inputs,
|
337 |
+
target_sample_rate,
|
338 |
+
hop_length,
|
339 |
+
nfe_step,
|
340 |
+
cfg_strength,
|
341 |
+
sway_sampling_coef,
|
342 |
+
)
|
343 |
+
|
344 |
+
if self.logger == "tensorboard":
|
345 |
+
self.writer.add_audio(
|
346 |
+
"Audio/original", wave_org, global_step, sample_rate=target_sample_rate
|
347 |
+
)
|
348 |
+
self.writer.add_audio(
|
349 |
+
"Audio/generate", wave_gen, global_step, sample_rate=target_sample_rate
|
350 |
+
)
|
351 |
+
self.writer.add_image("Mel/original", mel_org, global_step, dataformats="CHW")
|
352 |
+
self.writer.add_image("Mel/generate", mel_gen, global_step, dataformats="CHW")
|
353 |
+
except Exception as e:
|
354 |
+
print("An error occurred:", e)
|
355 |
+
|
356 |
self.accelerator.backward(loss)
|
357 |
|
358 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
|
|
368 |
global_step += 1
|
369 |
|
370 |
if self.accelerator.is_local_main_process:
|
371 |
+
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
372 |
|
373 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
374 |
|
src/f5_tts/model/utils.py
CHANGED
@@ -11,6 +11,10 @@ from torch.nn.utils.rnn import pad_sequence
|
|
11 |
import jieba
|
12 |
from pypinyin import lazy_pinyin, Style
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# seed everything
|
16 |
|
@@ -183,3 +187,73 @@ def repetition_found(text, length=2, tolerance=10):
|
|
183 |
if count > tolerance:
|
184 |
return True
|
185 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import jieba
|
12 |
from pypinyin import lazy_pinyin, Style
|
13 |
|
14 |
+
import numpy as np
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import soundfile as sf
|
17 |
+
import torchaudio
|
18 |
|
19 |
# seed everything
|
20 |
|
|
|
187 |
if count > tolerance:
|
188 |
return True
|
189 |
return False
|
190 |
+
|
191 |
+
|
192 |
+
def normalize_and_colorize_spectrogram(mel_org):
|
193 |
+
mel_min, mel_max = mel_org.min(), mel_org.max()
|
194 |
+
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
|
195 |
+
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
196 |
+
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
197 |
+
return mel_colored
|
198 |
+
|
199 |
+
|
200 |
+
def export_audio(file_out, wav, target_sample_rate):
|
201 |
+
sf.write(file_out, wav, samplerate=target_sample_rate)
|
202 |
+
|
203 |
+
|
204 |
+
def export_mel(mel_colored_hwc, file_out):
|
205 |
+
plt.imsave(file_out, mel_colored_hwc)
|
206 |
+
|
207 |
+
|
208 |
+
def gen_sample(model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef):
|
209 |
+
audio, sr = torchaudio.load(file_wav_org)
|
210 |
+
audio = audio.to("cuda")
|
211 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
212 |
+
text = [text_inputs[0] + [" . "] + text_inputs[0]]
|
213 |
+
duration = int((audio.shape[1] / 256) * 2.0)
|
214 |
+
with torch.inference_mode():
|
215 |
+
generated_gen, _ = model.sample(
|
216 |
+
cond=audio,
|
217 |
+
text=text,
|
218 |
+
duration=duration,
|
219 |
+
steps=nfe_step,
|
220 |
+
cfg_strength=cfg_strength,
|
221 |
+
sway_sampling_coef=sway_sampling_coef,
|
222 |
+
)
|
223 |
+
generated_gen = generated_gen.to(torch.float32)
|
224 |
+
generated_gen = generated_gen[:, ref_audio_len:, :]
|
225 |
+
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
|
226 |
+
generated_wave_gen = vocos.decode(generated_mel_spec_gen.cpu())
|
227 |
+
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
|
228 |
+
return generated_wave_gen, generated_mel_spec_gen
|
229 |
+
|
230 |
+
|
231 |
+
def get_sample(
|
232 |
+
vocos,
|
233 |
+
model,
|
234 |
+
file_path_samples,
|
235 |
+
global_step,
|
236 |
+
mel_org,
|
237 |
+
text_inputs,
|
238 |
+
target_sample_rate,
|
239 |
+
hop_length,
|
240 |
+
nfe_step,
|
241 |
+
cfg_strength,
|
242 |
+
sway_sampling_coef,
|
243 |
+
):
|
244 |
+
generated_wave_org = vocos.decode(mel_org.unsqueeze(0).cpu())
|
245 |
+
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
|
246 |
+
file_wav_org = os.path.join(file_path_samples, f"step_{global_step}_org.wav")
|
247 |
+
export_audio(file_wav_org, generated_wave_org, target_sample_rate)
|
248 |
+
generated_wave_gen, generated_mel_spec_gen = gen_sample(
|
249 |
+
model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef
|
250 |
+
)
|
251 |
+
file_wav_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.wav")
|
252 |
+
export_audio(file_wav_gen, generated_wave_gen, target_sample_rate)
|
253 |
+
mel_org = normalize_and_colorize_spectrogram(mel_org)
|
254 |
+
mel_gen = normalize_and_colorize_spectrogram(generated_mel_spec_gen[0])
|
255 |
+
file_gen_org = os.path.join(file_path_samples, f"step_{global_step}_org.png")
|
256 |
+
export_mel(np.transpose(mel_org, (1, 2, 0)), file_gen_org)
|
257 |
+
file_gen_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.png")
|
258 |
+
export_mel(np.transpose(mel_gen, (1, 2, 0)), file_gen_gen)
|
259 |
+
return generated_wave_org, generated_wave_gen, mel_org, mel_gen
|
src/f5_tts/train/finetune_cli.py
CHANGED
@@ -56,6 +56,14 @@ def parse_args():
|
|
56 |
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return parser.parse_args()
|
60 |
|
61 |
|
@@ -64,6 +72,7 @@ def parse_args():
|
|
64 |
|
65 |
def main():
|
66 |
args = parse_args()
|
|
|
67 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
68 |
|
69 |
# Model parameters based on experiment name
|
@@ -136,6 +145,8 @@ def main():
|
|
136 |
wandb_run_name=args.exp_name,
|
137 |
wandb_resume_id=wandb_resume_id,
|
138 |
last_per_steps=args.last_per_steps,
|
|
|
|
|
139 |
)
|
140 |
|
141 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
|
56 |
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
57 |
)
|
58 |
|
59 |
+
parser.add_argument(
|
60 |
+
"--export_samples",
|
61 |
+
type=bool,
|
62 |
+
default=False,
|
63 |
+
help="Export 4 audio and spect samples for the checkpoint audio, per step.",
|
64 |
+
)
|
65 |
+
parser.add_argument("--logger", type=str, default="wandb", choices=["none", "wandb", "tensorboard"], help="logger")
|
66 |
+
|
67 |
return parser.parse_args()
|
68 |
|
69 |
|
|
|
72 |
|
73 |
def main():
|
74 |
args = parse_args()
|
75 |
+
|
76 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
77 |
|
78 |
# Model parameters based on experiment name
|
|
|
145 |
wandb_run_name=args.exp_name,
|
146 |
wandb_resume_id=wandb_resume_id,
|
147 |
last_per_steps=args.last_per_steps,
|
148 |
+
logger=args.logger,
|
149 |
+
export_samples=args.export_samples,
|
150 |
)
|
151 |
|
152 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
src/f5_tts/train/finetune_gradio.py
CHANGED
@@ -69,6 +69,7 @@ def save_settings(
|
|
69 |
tokenizer_type,
|
70 |
tokenizer_file,
|
71 |
mixed_precision,
|
|
|
72 |
):
|
73 |
path_project = os.path.join(path_project_ckpts, project_name)
|
74 |
os.makedirs(path_project, exist_ok=True)
|
@@ -91,6 +92,7 @@ def save_settings(
|
|
91 |
"tokenizer_type": tokenizer_type,
|
92 |
"tokenizer_file": tokenizer_file,
|
93 |
"mixed_precision": mixed_precision,
|
|
|
94 |
}
|
95 |
with open(file_setting, "w") as f:
|
96 |
json.dump(settings, f, indent=4)
|
@@ -121,6 +123,7 @@ def load_settings(project_name):
|
|
121 |
"tokenizer_type": "pinyin",
|
122 |
"tokenizer_file": "",
|
123 |
"mixed_precision": "none",
|
|
|
124 |
}
|
125 |
return (
|
126 |
settings["exp_name"],
|
@@ -139,6 +142,7 @@ def load_settings(project_name):
|
|
139 |
settings["tokenizer_type"],
|
140 |
settings["tokenizer_file"],
|
141 |
settings["mixed_precision"],
|
|
|
142 |
)
|
143 |
|
144 |
with open(file_setting, "r") as f:
|
@@ -160,6 +164,7 @@ def load_settings(project_name):
|
|
160 |
settings["tokenizer_type"],
|
161 |
settings["tokenizer_file"],
|
162 |
settings["mixed_precision"],
|
|
|
163 |
)
|
164 |
|
165 |
|
@@ -374,6 +379,7 @@ def start_training(
|
|
374 |
tokenizer_file="",
|
375 |
mixed_precision="fp16",
|
376 |
stream=False,
|
|
|
377 |
):
|
378 |
global training_process, tts_api, stop_signal
|
379 |
|
@@ -447,6 +453,8 @@ def start_training(
|
|
447 |
|
448 |
cmd += f" --tokenizer {tokenizer_type} "
|
449 |
|
|
|
|
|
450 |
print(cmd)
|
451 |
|
452 |
save_settings(
|
@@ -467,6 +475,7 @@ def start_training(
|
|
467 |
tokenizer_type,
|
468 |
tokenizer_file,
|
469 |
mixed_precision,
|
|
|
470 |
)
|
471 |
|
472 |
try:
|
@@ -1223,6 +1232,27 @@ def get_checkpoints_project(project_name, is_gradio=True):
|
|
1223 |
return files_checkpoints, selelect_checkpoint
|
1224 |
|
1225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1226 |
def get_gpu_stats():
|
1227 |
gpu_stats = ""
|
1228 |
|
@@ -1290,6 +1320,21 @@ def get_combined_stats():
|
|
1290 |
return combined_stats
|
1291 |
|
1292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1293 |
with gr.Blocks() as app:
|
1294 |
gr.Markdown(
|
1295 |
"""
|
@@ -1470,6 +1515,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1470 |
|
1471 |
with gr.Row():
|
1472 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
|
|
|
1473 |
start_button = gr.Button("Start Training")
|
1474 |
stop_button = gr.Button("Stop Training", interactive=False)
|
1475 |
|
@@ -1491,6 +1537,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1491 |
tokenizer_typev,
|
1492 |
tokenizer_filev,
|
1493 |
mixed_precisionv,
|
|
|
1494 |
) = load_settings(projects_selelect)
|
1495 |
exp_name.value = exp_namev
|
1496 |
learning_rate.value = learning_ratev
|
@@ -1508,9 +1555,51 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1508 |
tokenizer_type.value = tokenizer_typev
|
1509 |
tokenizer_file.value = tokenizer_filev
|
1510 |
mixed_precision.value = mixed_precisionv
|
|
|
1511 |
|
1512 |
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
|
1513 |
txt_info_train = gr.Text(label="info", value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1514 |
start_button.click(
|
1515 |
fn=start_training,
|
1516 |
inputs=[
|
@@ -1532,6 +1621,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1532 |
tokenizer_file,
|
1533 |
mixed_precision,
|
1534 |
ch_stream,
|
|
|
1535 |
],
|
1536 |
outputs=[txt_info_train, start_button, stop_button],
|
1537 |
)
|
@@ -1583,6 +1673,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1583 |
tokenizer_type,
|
1584 |
tokenizer_file,
|
1585 |
mixed_precision,
|
|
|
1586 |
]
|
1587 |
|
1588 |
return output_components
|
|
|
69 |
tokenizer_type,
|
70 |
tokenizer_file,
|
71 |
mixed_precision,
|
72 |
+
logger,
|
73 |
):
|
74 |
path_project = os.path.join(path_project_ckpts, project_name)
|
75 |
os.makedirs(path_project, exist_ok=True)
|
|
|
92 |
"tokenizer_type": tokenizer_type,
|
93 |
"tokenizer_file": tokenizer_file,
|
94 |
"mixed_precision": mixed_precision,
|
95 |
+
"logger": logger,
|
96 |
}
|
97 |
with open(file_setting, "w") as f:
|
98 |
json.dump(settings, f, indent=4)
|
|
|
123 |
"tokenizer_type": "pinyin",
|
124 |
"tokenizer_file": "",
|
125 |
"mixed_precision": "none",
|
126 |
+
"logger": "wandb",
|
127 |
}
|
128 |
return (
|
129 |
settings["exp_name"],
|
|
|
142 |
settings["tokenizer_type"],
|
143 |
settings["tokenizer_file"],
|
144 |
settings["mixed_precision"],
|
145 |
+
settings["logger"],
|
146 |
)
|
147 |
|
148 |
with open(file_setting, "r") as f:
|
|
|
164 |
settings["tokenizer_type"],
|
165 |
settings["tokenizer_file"],
|
166 |
settings["mixed_precision"],
|
167 |
+
settings["logger"],
|
168 |
)
|
169 |
|
170 |
|
|
|
379 |
tokenizer_file="",
|
380 |
mixed_precision="fp16",
|
381 |
stream=False,
|
382 |
+
logger="wandb",
|
383 |
):
|
384 |
global training_process, tts_api, stop_signal
|
385 |
|
|
|
453 |
|
454 |
cmd += f" --tokenizer {tokenizer_type} "
|
455 |
|
456 |
+
cmd += f" --export_samples True --logger {logger} "
|
457 |
+
|
458 |
print(cmd)
|
459 |
|
460 |
save_settings(
|
|
|
475 |
tokenizer_type,
|
476 |
tokenizer_file,
|
477 |
mixed_precision,
|
478 |
+
logger,
|
479 |
)
|
480 |
|
481 |
try:
|
|
|
1232 |
return files_checkpoints, selelect_checkpoint
|
1233 |
|
1234 |
|
1235 |
+
def get_audio_project(project_name, is_gradio=True):
|
1236 |
+
if project_name is None:
|
1237 |
+
return [], ""
|
1238 |
+
project_name = project_name.replace("_pinyin", "").replace("_char", "")
|
1239 |
+
|
1240 |
+
if os.path.isdir(path_project_ckpts):
|
1241 |
+
files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
|
1242 |
+
files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))
|
1243 |
+
|
1244 |
+
files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
|
1245 |
+
else:
|
1246 |
+
files_audios = []
|
1247 |
+
|
1248 |
+
selelect_checkpoint = None if not files_audios else files_audios[0]
|
1249 |
+
|
1250 |
+
if is_gradio:
|
1251 |
+
return gr.update(choices=files_audios, value=selelect_checkpoint)
|
1252 |
+
|
1253 |
+
return files_audios, selelect_checkpoint
|
1254 |
+
|
1255 |
+
|
1256 |
def get_gpu_stats():
|
1257 |
gpu_stats = ""
|
1258 |
|
|
|
1320 |
return combined_stats
|
1321 |
|
1322 |
|
1323 |
+
def get_audio_select(file_sample):
|
1324 |
+
select_audio_org = file_sample
|
1325 |
+
select_audio_gen = file_sample
|
1326 |
+
select_image_org = file_sample
|
1327 |
+
select_image_gen = file_sample
|
1328 |
+
|
1329 |
+
if file_sample is not None:
|
1330 |
+
select_audio_org += "_org.wav"
|
1331 |
+
select_audio_gen += "_gen.wav"
|
1332 |
+
select_image_org += "_org.png"
|
1333 |
+
select_image_gen += "_gen.png"
|
1334 |
+
|
1335 |
+
return select_audio_org, select_audio_gen, select_image_org, select_image_gen
|
1336 |
+
|
1337 |
+
|
1338 |
with gr.Blocks() as app:
|
1339 |
gr.Markdown(
|
1340 |
"""
|
|
|
1515 |
|
1516 |
with gr.Row():
|
1517 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
|
1518 |
+
cd_logger = gr.Radio(label="logger", choices=["none", "wandb", "tensorboard"], value="wandb")
|
1519 |
start_button = gr.Button("Start Training")
|
1520 |
stop_button = gr.Button("Stop Training", interactive=False)
|
1521 |
|
|
|
1537 |
tokenizer_typev,
|
1538 |
tokenizer_filev,
|
1539 |
mixed_precisionv,
|
1540 |
+
cd_loggerv,
|
1541 |
) = load_settings(projects_selelect)
|
1542 |
exp_name.value = exp_namev
|
1543 |
learning_rate.value = learning_ratev
|
|
|
1555 |
tokenizer_type.value = tokenizer_typev
|
1556 |
tokenizer_file.value = tokenizer_filev
|
1557 |
mixed_precision.value = mixed_precisionv
|
1558 |
+
cd_logger.value = cd_loggerv
|
1559 |
|
1560 |
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
|
1561 |
txt_info_train = gr.Text(label="info", value="")
|
1562 |
+
|
1563 |
+
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1564 |
+
|
1565 |
+
select_audio_org = select_audio
|
1566 |
+
select_audio_gen = select_audio
|
1567 |
+
select_image_org = select_audio
|
1568 |
+
select_image_gen = select_audio
|
1569 |
+
|
1570 |
+
if select_audio is not None:
|
1571 |
+
select_audio_org += "_org.wav"
|
1572 |
+
select_audio_gen += "_gen.wav"
|
1573 |
+
select_image_org += "_org.png"
|
1574 |
+
select_image_gen += "_gen.png"
|
1575 |
+
|
1576 |
+
with gr.Row():
|
1577 |
+
ch_list_audio = gr.Dropdown(
|
1578 |
+
choices=list_audios,
|
1579 |
+
value=select_audio,
|
1580 |
+
label="audios",
|
1581 |
+
allow_custom_value=True,
|
1582 |
+
scale=6,
|
1583 |
+
interactive=True,
|
1584 |
+
)
|
1585 |
+
bt_stream_audio = gr.Button("refresh", scale=1)
|
1586 |
+
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1587 |
+
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1588 |
+
|
1589 |
+
with gr.Row():
|
1590 |
+
audio_org_stream = gr.Audio(label="original", type="filepath", value=select_audio_org)
|
1591 |
+
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
|
1592 |
+
|
1593 |
+
with gr.Row():
|
1594 |
+
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
1595 |
+
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
|
1596 |
+
|
1597 |
+
ch_list_audio.change(
|
1598 |
+
fn=get_audio_select,
|
1599 |
+
inputs=[ch_list_audio],
|
1600 |
+
outputs=[audio_org_stream, audio_gen_stream, mel_org_stream, mel_gen_stream],
|
1601 |
+
)
|
1602 |
+
|
1603 |
start_button.click(
|
1604 |
fn=start_training,
|
1605 |
inputs=[
|
|
|
1621 |
tokenizer_file,
|
1622 |
mixed_precision,
|
1623 |
ch_stream,
|
1624 |
+
cd_logger,
|
1625 |
],
|
1626 |
outputs=[txt_info_train, start_button, stop_button],
|
1627 |
)
|
|
|
1673 |
tokenizer_type,
|
1674 |
tokenizer_file,
|
1675 |
mixed_precision,
|
1676 |
+
cd_logger,
|
1677 |
]
|
1678 |
|
1679 |
return output_components
|