Spaces:
Configuration error
Configuration error
unknown
commited on
Commit
·
37eb3b5
1
Parent(s):
d601a70
add tensorboard and add export sample for mel and audio
Browse files- src/f5_tts/model/trainer.py +147 -14
- src/f5_tts/train/finetune_cli.py +11 -0
- src/f5_tts/train/finetune_gradio.py +79 -0
src/f5_tts/model/trainer.py
CHANGED
@@ -3,7 +3,11 @@ from __future__ import annotations
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import torch
|
9 |
from torch.optim import AdamW
|
@@ -19,9 +23,26 @@ from f5_tts.model import CFM
|
|
19 |
from f5_tts.model.utils import exists, default
|
20 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
21 |
|
22 |
-
|
|
|
23 |
# trainer
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
class Trainer:
|
27 |
def __init__(
|
@@ -39,6 +60,8 @@ class Trainer:
|
|
39 |
max_grad_norm=1.0,
|
40 |
noise_scheduler: str | None = None,
|
41 |
duration_predictor: torch.nn.Module | None = None,
|
|
|
|
|
42 |
wandb_project="test_e2-tts",
|
43 |
wandb_run_name="test_run",
|
44 |
wandb_resume_id: str = None,
|
@@ -46,24 +69,24 @@ class Trainer:
|
|
46 |
accelerate_kwargs: dict = dict(),
|
47 |
ema_kwargs: dict = dict(),
|
48 |
bnb_optimizer: bool = False,
|
|
|
49 |
):
|
50 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
51 |
|
52 |
-
logger =
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
|
62 |
-
if logger == "wandb":
|
63 |
if exists(wandb_resume_id):
|
64 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
65 |
else:
|
66 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
|
|
67 |
self.accelerator.init_trackers(
|
68 |
project_name=wandb_project,
|
69 |
init_kwargs=init_kwargs,
|
@@ -80,12 +103,37 @@ class Trainer:
|
|
80 |
"noise_scheduler": noise_scheduler,
|
81 |
},
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
self.model = model
|
85 |
|
86 |
if self.is_main:
|
87 |
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
88 |
-
|
89 |
self.ema_model.to(self.accelerator.device)
|
90 |
|
91 |
self.epochs = epochs
|
@@ -175,6 +223,82 @@ class Trainer:
|
|
175 |
gc.collect()
|
176 |
return step
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
179 |
if exists(resumable_with_seed):
|
180 |
generator = torch.Generator()
|
@@ -270,6 +394,15 @@ class Trainer:
|
|
270 |
loss, cond, pred = self.model(
|
271 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
272 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
self.accelerator.backward(loss)
|
274 |
|
275 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
@@ -285,7 +418,7 @@ class Trainer:
|
|
285 |
global_step += 1
|
286 |
|
287 |
if self.accelerator.is_local_main_process:
|
288 |
-
self.
|
289 |
|
290 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
291 |
|
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
+
|
7 |
+
try:
|
8 |
+
from torch.utils.tensorboard import SummaryWriter
|
9 |
+
except ImportError:
|
10 |
+
print("TensorBoard is not installed")
|
11 |
|
12 |
import torch
|
13 |
from torch.optim import AdamW
|
|
|
23 |
from f5_tts.model.utils import exists, default
|
24 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
25 |
|
26 |
+
import numpy as np
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
# trainer
|
29 |
|
30 |
+
# audio imports
|
31 |
+
import torchaudio
|
32 |
+
import soundfile as sf
|
33 |
+
from vocos import Vocos
|
34 |
+
import warnings
|
35 |
+
|
36 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
37 |
+
|
38 |
+
# -----------------------------------------
|
39 |
+
target_sample_rate = 24000
|
40 |
+
hop_length = 256
|
41 |
+
nfe_step = 16
|
42 |
+
cfg_strength = 2.0
|
43 |
+
sway_sampling_coef = -1.0
|
44 |
+
# -----------------------------------------
|
45 |
+
|
46 |
|
47 |
class Trainer:
|
48 |
def __init__(
|
|
|
60 |
max_grad_norm=1.0,
|
61 |
noise_scheduler: str | None = None,
|
62 |
duration_predictor: torch.nn.Module | None = None,
|
63 |
+
logger: str = "wandb", # Add logger parameter wandb,tensorboard , none
|
64 |
+
log_dir: str = "logs", # Add log directory parameter
|
65 |
wandb_project="test_e2-tts",
|
66 |
wandb_run_name="test_run",
|
67 |
wandb_resume_id: str = None,
|
|
|
69 |
accelerate_kwargs: dict = dict(),
|
70 |
ema_kwargs: dict = dict(),
|
71 |
bnb_optimizer: bool = False,
|
72 |
+
export_samples=False,
|
73 |
):
|
74 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
75 |
|
76 |
+
self.logger = logger
|
77 |
+
if self.logger == "wandb":
|
78 |
+
self.accelerator = Accelerator(
|
79 |
+
log_with="wandb",
|
80 |
+
kwargs_handlers=[ddp_kwargs],
|
81 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
82 |
+
**accelerate_kwargs,
|
83 |
+
)
|
|
|
84 |
|
|
|
85 |
if exists(wandb_resume_id):
|
86 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
87 |
else:
|
88 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
89 |
+
|
90 |
self.accelerator.init_trackers(
|
91 |
project_name=wandb_project,
|
92 |
init_kwargs=init_kwargs,
|
|
|
103 |
"noise_scheduler": noise_scheduler,
|
104 |
},
|
105 |
)
|
106 |
+
elif self.logger == "tensorboard":
|
107 |
+
self.accelerator = Accelerator(
|
108 |
+
kwargs_handlers=[ddp_kwargs],
|
109 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
110 |
+
**accelerate_kwargs,
|
111 |
+
)
|
112 |
+
if self.is_main:
|
113 |
+
path_log_dir = os.path.join(log_dir, wandb_project)
|
114 |
+
os.makedirs(path_log_dir, exist_ok=True)
|
115 |
+
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
|
116 |
+
next_number = len(existing_folders) + 2
|
117 |
+
folder_name = f"exp{next_number}"
|
118 |
+
folder_path = os.path.join(path_log_dir, folder_name)
|
119 |
+
os.makedirs(folder_path, exist_ok=True)
|
120 |
+
|
121 |
+
self.writer = SummaryWriter(log_dir=folder_path)
|
122 |
+
|
123 |
+
# export audio and mel
|
124 |
+
self.export_samples = export_samples
|
125 |
+
if self.export_samples:
|
126 |
+
self.path_ckpts_project = checkpoint_path
|
127 |
+
|
128 |
+
self.vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
129 |
+
self.vocos.to("cpu")
|
130 |
+
self.file_path_samples = os.path.join(self.path_ckpts_project, "samples")
|
131 |
+
os.makedirs(self.file_path_samples, exist_ok=True)
|
132 |
|
133 |
self.model = model
|
134 |
|
135 |
if self.is_main:
|
136 |
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
|
|
137 |
self.ema_model.to(self.accelerator.device)
|
138 |
|
139 |
self.epochs = epochs
|
|
|
223 |
gc.collect()
|
224 |
return step
|
225 |
|
226 |
+
def log(self, metrics, step):
|
227 |
+
"""Unified logging method for both WandB and TensorBoard"""
|
228 |
+
if self.logger == "none":
|
229 |
+
return
|
230 |
+
if self.logger == "wandb":
|
231 |
+
self.accelerator.log(metrics, step=step)
|
232 |
+
elif self.is_main:
|
233 |
+
for key, value in metrics.items():
|
234 |
+
self.writer.add_scalar(key, value, step)
|
235 |
+
|
236 |
+
def export_add_log(self, global_step, mel_org, text_inputs):
|
237 |
+
try:
|
238 |
+
generated_wave_org = self.vocos.decode(mel_org.unsqueeze(0).cpu())
|
239 |
+
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
|
240 |
+
file_wav_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.wav")
|
241 |
+
sf.write(file_wav_org, generated_wave_org, target_sample_rate)
|
242 |
+
|
243 |
+
audio, sr = torchaudio.load(file_wav_org)
|
244 |
+
audio = audio.to("cuda")
|
245 |
+
|
246 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
247 |
+
text = [text_inputs[0] + [" . "] + text_inputs[0]]
|
248 |
+
duration = int((audio.shape[1] / 256) * 2.0)
|
249 |
+
|
250 |
+
with torch.inference_mode():
|
251 |
+
generated_gen, _ = self.model.sample(
|
252 |
+
cond=audio,
|
253 |
+
text=text,
|
254 |
+
duration=duration,
|
255 |
+
steps=nfe_step,
|
256 |
+
cfg_strength=cfg_strength,
|
257 |
+
sway_sampling_coef=sway_sampling_coef,
|
258 |
+
)
|
259 |
+
|
260 |
+
generated_gen = generated_gen.to(torch.float32)
|
261 |
+
generated_gen = generated_gen[:, ref_audio_len:, :]
|
262 |
+
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
|
263 |
+
generated_wave_gen = self.vocos.decode(generated_mel_spec_gen.cpu())
|
264 |
+
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
|
265 |
+
file_wav_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.wav")
|
266 |
+
sf.write(file_wav_gen, generated_wave_gen, target_sample_rate)
|
267 |
+
|
268 |
+
if self.logger == "tensorboard":
|
269 |
+
self.writer.add_audio("Audio/original", generated_wave_org, global_step, sample_rate=target_sample_rate)
|
270 |
+
|
271 |
+
self.writer.add_audio("Audio/generate", generated_wave_gen, global_step, sample_rate=target_sample_rate)
|
272 |
+
|
273 |
+
mel_org = mel_org
|
274 |
+
mel_min, mel_max = mel_org.min(), mel_org.max()
|
275 |
+
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
|
276 |
+
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
277 |
+
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
278 |
+
|
279 |
+
if self.logger == "tensorboard":
|
280 |
+
self.writer.add_image("Mel/oginal", mel_colored, global_step, dataformats="CHW")
|
281 |
+
|
282 |
+
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
|
283 |
+
file_gen_org = os.path.join(self.file_path_samples, f"step_{global_step}_org.png")
|
284 |
+
plt.imsave(file_gen_org, mel_colored_hwc)
|
285 |
+
|
286 |
+
mel_gen = generated_mel_spec_gen[0]
|
287 |
+
mel_min, mel_max = mel_gen.min(), mel_gen.max()
|
288 |
+
mel_norm = (mel_gen - mel_min) / (mel_max - mel_min + 1e-8)
|
289 |
+
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
290 |
+
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
291 |
+
|
292 |
+
if self.logger == "tensorboard":
|
293 |
+
self.writer.add_image("Mel/generate", mel_colored, global_step, dataformats="CHW")
|
294 |
+
|
295 |
+
mel_colored_hwc = np.transpose(mel_colored, (1, 2, 0))
|
296 |
+
file_gen_gen = os.path.join(self.file_path_samples, f"step_{global_step}_gen.png")
|
297 |
+
plt.imsave(file_gen_gen, mel_colored_hwc)
|
298 |
+
|
299 |
+
except Exception as e:
|
300 |
+
print("An error occurred:", e)
|
301 |
+
|
302 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
303 |
if exists(resumable_with_seed):
|
304 |
generator = torch.Generator()
|
|
|
394 |
loss, cond, pred = self.model(
|
395 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
396 |
)
|
397 |
+
|
398 |
+
# save 4 audio per save step
|
399 |
+
if (
|
400 |
+
self.accelerator.is_local_main_process
|
401 |
+
and self.export_samples
|
402 |
+
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
|
403 |
+
):
|
404 |
+
self.export_add_log(global_step, batch["mel"][0], text_inputs)
|
405 |
+
|
406 |
self.accelerator.backward(loss)
|
407 |
|
408 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
|
|
418 |
global_step += 1
|
419 |
|
420 |
if self.accelerator.is_local_main_process:
|
421 |
+
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
422 |
|
423 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
424 |
|
src/f5_tts/train/finetune_cli.py
CHANGED
@@ -56,6 +56,14 @@ def parse_args():
|
|
56 |
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return parser.parse_args()
|
60 |
|
61 |
|
@@ -64,6 +72,7 @@ def parse_args():
|
|
64 |
|
65 |
def main():
|
66 |
args = parse_args()
|
|
|
67 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
68 |
|
69 |
# Model parameters based on experiment name
|
@@ -136,6 +145,8 @@ def main():
|
|
136 |
wandb_run_name=args.exp_name,
|
137 |
wandb_resume_id=wandb_resume_id,
|
138 |
last_per_steps=args.last_per_steps,
|
|
|
|
|
139 |
)
|
140 |
|
141 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
|
56 |
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
57 |
)
|
58 |
|
59 |
+
parser.add_argument(
|
60 |
+
"--export_samples",
|
61 |
+
type=bool,
|
62 |
+
default=False,
|
63 |
+
help="Export 4 audio and spect samples for the checkpoint audio, per step.",
|
64 |
+
)
|
65 |
+
parser.add_argument("--logger", type=str, default="wandb", choices=["none", "wandb", "tensorboard"], help="logger")
|
66 |
+
|
67 |
return parser.parse_args()
|
68 |
|
69 |
|
|
|
72 |
|
73 |
def main():
|
74 |
args = parse_args()
|
75 |
+
|
76 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
77 |
|
78 |
# Model parameters based on experiment name
|
|
|
145 |
wandb_run_name=args.exp_name,
|
146 |
wandb_resume_id=wandb_resume_id,
|
147 |
last_per_steps=args.last_per_steps,
|
148 |
+
logger=args.logger,
|
149 |
+
export_samples=args.export_samples,
|
150 |
)
|
151 |
|
152 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
src/f5_tts/train/finetune_gradio.py
CHANGED
@@ -447,6 +447,8 @@ def start_training(
|
|
447 |
|
448 |
cmd += f" --tokenizer {tokenizer_type} "
|
449 |
|
|
|
|
|
450 |
print(cmd)
|
451 |
|
452 |
save_settings(
|
@@ -1223,6 +1225,27 @@ def get_checkpoints_project(project_name, is_gradio=True):
|
|
1223 |
return files_checkpoints, selelect_checkpoint
|
1224 |
|
1225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1226 |
def get_gpu_stats():
|
1227 |
gpu_stats = ""
|
1228 |
|
@@ -1290,6 +1313,21 @@ def get_combined_stats():
|
|
1290 |
return combined_stats
|
1291 |
|
1292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1293 |
with gr.Blocks() as app:
|
1294 |
gr.Markdown(
|
1295 |
"""
|
@@ -1511,6 +1549,47 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1511 |
|
1512 |
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
|
1513 |
txt_info_train = gr.Text(label="info", value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1514 |
start_button.click(
|
1515 |
fn=start_training,
|
1516 |
inputs=[
|
|
|
447 |
|
448 |
cmd += f" --tokenizer {tokenizer_type} "
|
449 |
|
450 |
+
cmd += " --export_samples True --logger wandb "
|
451 |
+
|
452 |
print(cmd)
|
453 |
|
454 |
save_settings(
|
|
|
1225 |
return files_checkpoints, selelect_checkpoint
|
1226 |
|
1227 |
|
1228 |
+
def get_audio_project(project_name, is_gradio=True):
|
1229 |
+
if project_name is None:
|
1230 |
+
return [], ""
|
1231 |
+
project_name = project_name.replace("_pinyin", "").replace("_char", "")
|
1232 |
+
|
1233 |
+
if os.path.isdir(path_project_ckpts):
|
1234 |
+
files_audios = glob(os.path.join(path_project_ckpts, project_name, "samples", "*.wav"))
|
1235 |
+
files_audios = sorted(files_audios, key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]))
|
1236 |
+
|
1237 |
+
files_audios = [item.replace("_gen.wav", "") for item in files_audios if item.endswith("_gen.wav")]
|
1238 |
+
else:
|
1239 |
+
files_audios = []
|
1240 |
+
|
1241 |
+
selelect_checkpoint = None if not files_audios else files_audios[0]
|
1242 |
+
|
1243 |
+
if is_gradio:
|
1244 |
+
return gr.update(choices=files_audios, value=selelect_checkpoint)
|
1245 |
+
|
1246 |
+
return files_audios, selelect_checkpoint
|
1247 |
+
|
1248 |
+
|
1249 |
def get_gpu_stats():
|
1250 |
gpu_stats = ""
|
1251 |
|
|
|
1313 |
return combined_stats
|
1314 |
|
1315 |
|
1316 |
+
def get_audio_select(file_sample):
|
1317 |
+
select_audio_org = file_sample
|
1318 |
+
select_audio_gen = file_sample
|
1319 |
+
select_image_org = file_sample
|
1320 |
+
select_image_gen = file_sample
|
1321 |
+
|
1322 |
+
if file_sample is not None:
|
1323 |
+
select_audio_org += "_org.wav"
|
1324 |
+
select_audio_gen += "_gen.wav"
|
1325 |
+
select_image_org += "_org.png"
|
1326 |
+
select_image_gen += "_gen.png"
|
1327 |
+
|
1328 |
+
return select_audio_org, select_audio_gen, select_image_org, select_image_gen
|
1329 |
+
|
1330 |
+
|
1331 |
with gr.Blocks() as app:
|
1332 |
gr.Markdown(
|
1333 |
"""
|
|
|
1549 |
|
1550 |
ch_stream = gr.Checkbox(label="stream output experiment.", value=True)
|
1551 |
txt_info_train = gr.Text(label="info", value="")
|
1552 |
+
|
1553 |
+
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1554 |
+
|
1555 |
+
select_audio_org = select_audio
|
1556 |
+
select_audio_gen = select_audio
|
1557 |
+
select_image_org = select_audio
|
1558 |
+
select_image_gen = select_audio
|
1559 |
+
|
1560 |
+
if select_audio is not None:
|
1561 |
+
select_audio_org += "_org.wav"
|
1562 |
+
select_audio_gen += "_gen.wav"
|
1563 |
+
select_image_org += "_org.png"
|
1564 |
+
select_image_gen += "_gen.png"
|
1565 |
+
|
1566 |
+
with gr.Row():
|
1567 |
+
ch_list_audio = gr.Dropdown(
|
1568 |
+
choices=list_audios,
|
1569 |
+
value=select_audio,
|
1570 |
+
label="audios",
|
1571 |
+
allow_custom_value=True,
|
1572 |
+
scale=6,
|
1573 |
+
interactive=True,
|
1574 |
+
)
|
1575 |
+
bt_stream_audio = gr.Button("refresh", scale=1)
|
1576 |
+
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1577 |
+
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1578 |
+
|
1579 |
+
with gr.Row():
|
1580 |
+
audio_org_stream = gr.Audio(label="original", type="filepath", value=select_audio_org)
|
1581 |
+
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
|
1582 |
+
|
1583 |
+
with gr.Row():
|
1584 |
+
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
1585 |
+
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
|
1586 |
+
|
1587 |
+
ch_list_audio.change(
|
1588 |
+
fn=get_audio_select,
|
1589 |
+
inputs=[ch_list_audio],
|
1590 |
+
outputs=[audio_org_stream, audio_gen_stream, mel_org_stream, mel_gen_stream],
|
1591 |
+
)
|
1592 |
+
|
1593 |
start_button.click(
|
1594 |
fn=start_training,
|
1595 |
inputs=[
|