Spaces:
Configuration error
Configuration error
formatting #363, credit to @JarodMica, also dur_pred check fork repo
Browse files- src/f5_tts/infer/README.md +4 -1
- src/f5_tts/socket.py +15 -10
- src/f5_tts/train/finetune_gradio.py +66 -66
src/f5_tts/infer/README.md
CHANGED
@@ -122,7 +122,8 @@ To communicate with socket server you need to run
|
|
122 |
python src/f5_tts/socket.py
|
123 |
```
|
124 |
|
125 |
-
|
|
|
126 |
|
127 |
``` python
|
128 |
import socket
|
@@ -184,3 +185,5 @@ async def main():
|
|
184 |
asyncio.run(main())
|
185 |
```
|
186 |
|
|
|
|
|
|
122 |
python src/f5_tts/socket.py
|
123 |
```
|
124 |
|
125 |
+
<details>
|
126 |
+
<summary>Then create client to communicate</summary>
|
127 |
|
128 |
``` python
|
129 |
import socket
|
|
|
185 |
asyncio.run(main())
|
186 |
```
|
187 |
|
188 |
+
</details>
|
189 |
+
|
src/f5_tts/socket.py
CHANGED
@@ -22,7 +22,7 @@ class TTSStreamingProcessor:
|
|
22 |
DiT,
|
23 |
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
24 |
ckpt_file,
|
25 |
-
vocab_file
|
26 |
).to(self.device, dtype=dtype)
|
27 |
|
28 |
# Load the vocoder
|
@@ -59,14 +59,19 @@ class TTSStreamingProcessor:
|
|
59 |
|
60 |
# Run inference for the input text
|
61 |
audio_chunk, final_sample_rate, _ = infer_batch_process(
|
62 |
-
(audio, sr),
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
# Break the generated audio into chunks and send them
|
66 |
chunk_size = int(final_sample_rate * play_steps_in_s)
|
67 |
-
|
68 |
for i in range(0, len(audio_chunk), chunk_size):
|
69 |
-
chunk = audio_chunk[i:i + chunk_size]
|
70 |
|
71 |
# Check if it's the final chunk
|
72 |
if i + chunk_size >= len(audio_chunk):
|
@@ -77,13 +82,13 @@ class TTSStreamingProcessor:
|
|
77 |
break
|
78 |
|
79 |
# Pack and send the audio chunk
|
80 |
-
packed_audio = struct.pack(f
|
81 |
yield packed_audio
|
82 |
|
83 |
# Ensure that no final word is repeated by not resending partial chunks
|
84 |
if len(audio_chunk) % chunk_size != 0:
|
85 |
-
remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size):]
|
86 |
-
packed_audio = struct.pack(f
|
87 |
yield packed_audio
|
88 |
|
89 |
|
@@ -134,9 +139,9 @@ def start_server(host, port, processor):
|
|
134 |
if __name__ == "__main__":
|
135 |
try:
|
136 |
# Load the model and vocoder using the provided files
|
137 |
-
ckpt_file = ""
|
138 |
vocab_file = "" # Add vocab file path if needed
|
139 |
-
ref_audio =""
|
140 |
ref_text = ""
|
141 |
|
142 |
# Initialize the processor with the model and vocoder
|
@@ -145,7 +150,7 @@ if __name__ == "__main__":
|
|
145 |
vocab_file=vocab_file,
|
146 |
ref_audio=ref_audio,
|
147 |
ref_text=ref_text,
|
148 |
-
dtype=torch.float32
|
149 |
)
|
150 |
|
151 |
# Start the server
|
|
|
22 |
DiT,
|
23 |
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
24 |
ckpt_file,
|
25 |
+
vocab_file,
|
26 |
).to(self.device, dtype=dtype)
|
27 |
|
28 |
# Load the vocoder
|
|
|
59 |
|
60 |
# Run inference for the input text
|
61 |
audio_chunk, final_sample_rate, _ = infer_batch_process(
|
62 |
+
(audio, sr),
|
63 |
+
ref_text,
|
64 |
+
[text],
|
65 |
+
self.model,
|
66 |
+
self.vocoder,
|
67 |
+
device=self.device, # Pass vocoder here
|
68 |
)
|
69 |
|
70 |
# Break the generated audio into chunks and send them
|
71 |
chunk_size = int(final_sample_rate * play_steps_in_s)
|
72 |
+
|
73 |
for i in range(0, len(audio_chunk), chunk_size):
|
74 |
+
chunk = audio_chunk[i : i + chunk_size]
|
75 |
|
76 |
# Check if it's the final chunk
|
77 |
if i + chunk_size >= len(audio_chunk):
|
|
|
82 |
break
|
83 |
|
84 |
# Pack and send the audio chunk
|
85 |
+
packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
|
86 |
yield packed_audio
|
87 |
|
88 |
# Ensure that no final word is repeated by not resending partial chunks
|
89 |
if len(audio_chunk) % chunk_size != 0:
|
90 |
+
remaining_chunk = audio_chunk[-(len(audio_chunk) % chunk_size) :]
|
91 |
+
packed_audio = struct.pack(f"{len(remaining_chunk)}f", *remaining_chunk)
|
92 |
yield packed_audio
|
93 |
|
94 |
|
|
|
139 |
if __name__ == "__main__":
|
140 |
try:
|
141 |
# Load the model and vocoder using the provided files
|
142 |
+
ckpt_file = "" # pointing your checkpoint "ckpts/model/model_1096.pt"
|
143 |
vocab_file = "" # Add vocab file path if needed
|
144 |
+
ref_audio = "" # add ref audio"./tests/ref_audio/reference.wav"
|
145 |
ref_text = ""
|
146 |
|
147 |
# Initialize the processor with the model and vocoder
|
|
|
150 |
vocab_file=vocab_file,
|
151 |
ref_audio=ref_audio,
|
152 |
ref_text=ref_text,
|
153 |
+
dtype=torch.float32,
|
154 |
)
|
155 |
|
156 |
# Start the server
|
src/f5_tts/train/finetune_gradio.py
CHANGED
@@ -1372,7 +1372,7 @@ def get_audio_select(file_sample):
|
|
1372 |
with gr.Blocks() as app:
|
1373 |
gr.Markdown(
|
1374 |
"""
|
1375 |
-
# E2/F5 TTS
|
1376 |
|
1377 |
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
1378 |
|
@@ -1381,35 +1381,35 @@ This is a local web UI for F5 TTS with advanced batch processing support. This a
|
|
1381 |
|
1382 |
The checkpoints support English and Chinese.
|
1383 |
|
1384 |
-
|
1385 |
"""
|
1386 |
)
|
1387 |
|
1388 |
with gr.Row():
|
1389 |
projects, projects_selelect = get_list_projects()
|
1390 |
-
tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin")
|
1391 |
-
project_name = gr.Textbox(label="
|
1392 |
-
bt_create = gr.Button("
|
1393 |
|
1394 |
with gr.Row():
|
1395 |
cm_project = gr.Dropdown(
|
1396 |
choices=projects, value=projects_selelect, label="Project", allow_custom_value=True, scale=6
|
1397 |
)
|
1398 |
-
ch_refresh_project = gr.Button("
|
1399 |
|
1400 |
bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])
|
1401 |
|
1402 |
with gr.Tabs():
|
1403 |
-
with gr.TabItem("
|
1404 |
gr.Markdown("""```plaintext
|
1405 |
Skip this step if you have your dataset, metadata.csv, and a folder wavs with all the audio files.
|
1406 |
```""")
|
1407 |
|
1408 |
-
ch_manual = gr.Checkbox(label="
|
1409 |
|
1410 |
mark_info_transcribe = gr.Markdown(
|
1411 |
"""```plaintext
|
1412 |
-
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
|
1413 |
|
1414 |
my_speak/
|
1415 |
β
|
@@ -1421,10 +1421,10 @@ Skip this step if you have your dataset, metadata.csv, and a folder wavs with al
|
|
1421 |
visible=False,
|
1422 |
)
|
1423 |
|
1424 |
-
audio_speaker = gr.File(label="
|
1425 |
-
txt_lang = gr.Text(label="Language", value="
|
1426 |
-
bt_transcribe = bt_create = gr.Button("
|
1427 |
-
txt_info_transcribe = gr.Text(label="
|
1428 |
bt_transcribe.click(
|
1429 |
fn=transcribe_all,
|
1430 |
inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
|
@@ -1432,7 +1432,7 @@ Skip this step if you have your dataset, metadata.csv, and a folder wavs with al
|
|
1432 |
)
|
1433 |
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
|
1434 |
|
1435 |
-
random_sample_transcribe = gr.Button("
|
1436 |
|
1437 |
with gr.Row():
|
1438 |
random_text_transcribe = gr.Text(label="Text")
|
@@ -1444,16 +1444,16 @@ Skip this step if you have your dataset, metadata.csv, and a folder wavs with al
|
|
1444 |
outputs=[random_text_transcribe, random_audio_transcribe],
|
1445 |
)
|
1446 |
|
1447 |
-
with gr.TabItem("
|
1448 |
gr.Markdown("""```plaintext
|
1449 |
-
|
1450 |
```""")
|
1451 |
|
1452 |
-
check_button = gr.Button("
|
1453 |
-
txt_info_check = gr.Text(label="
|
1454 |
|
1455 |
gr.Markdown("""```plaintext
|
1456 |
-
Using the extended model, you can
|
1457 |
```""")
|
1458 |
|
1459 |
exp_name_extend = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
@@ -1465,10 +1465,10 @@ Using the extended model, you can fine-tune to a new language that is missing sy
|
|
1465 |
placeholder="To add new symbols, make sure to use ',' for each symbol",
|
1466 |
scale=6,
|
1467 |
)
|
1468 |
-
txt_count_symbol = gr.Textbox(label="
|
1469 |
|
1470 |
-
extend_button = gr.Button("
|
1471 |
-
txt_info_extend = gr.Text(label="
|
1472 |
|
1473 |
txt_extend.change(vocab_count, inputs=[txt_extend], outputs=[txt_count_symbol])
|
1474 |
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check, txt_extend])
|
@@ -1476,18 +1476,18 @@ Using the extended model, you can fine-tune to a new language that is missing sy
|
|
1476 |
fn=vocab_extend, inputs=[cm_project, txt_extend, exp_name_extend], outputs=[txt_info_extend]
|
1477 |
)
|
1478 |
|
1479 |
-
with gr.TabItem("
|
1480 |
gr.Markdown("""```plaintext
|
1481 |
-
Skip this step if you have your dataset, raw.arrow
|
1482 |
```""")
|
1483 |
|
1484 |
gr.Markdown(
|
1485 |
"""```plaintext
|
1486 |
-
|
1487 |
|
1488 |
-
|
1489 |
|
1490 |
-
|
1491 |
my_speak/
|
1492 |
β
|
1493 |
βββ wavs/
|
@@ -1497,24 +1497,24 @@ Skip this step if you have your dataset, raw.arrow , duraction.json and vocab.tx
|
|
1497 |
β
|
1498 |
βββ metadata.csv
|
1499 |
|
1500 |
-
|
1501 |
|
1502 |
audio1|text1 or audio1.wav|text1 or your_path/audio1.wav|text1
|
1503 |
-
audio2|text1 or audio2.wav|text1 or your_path/
|
1504 |
...
|
1505 |
|
1506 |
```"""
|
1507 |
)
|
1508 |
-
ch_tokenizern = gr.Checkbox(label="
|
1509 |
-
bt_prepare = bt_create = gr.Button("
|
1510 |
-
txt_info_prepare = gr.Text(label="
|
1511 |
-
txt_vocab_prepare = gr.Text(label="
|
1512 |
|
1513 |
bt_prepare.click(
|
1514 |
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
|
1515 |
)
|
1516 |
|
1517 |
-
random_sample_prepare = gr.Button("
|
1518 |
|
1519 |
with gr.Row():
|
1520 |
random_text_prepare = gr.Text(label="Tokenizer")
|
@@ -1524,20 +1524,20 @@ Skip this step if you have your dataset, raw.arrow , duraction.json and vocab.tx
|
|
1524 |
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
|
1525 |
)
|
1526 |
|
1527 |
-
with gr.TabItem("
|
1528 |
gr.Markdown("""```plaintext
|
1529 |
-
The auto-setting is still experimental. Please make sure that the epochs
|
1530 |
If you encounter a memory error, try reducing the batch size per GPU to a smaller number.
|
1531 |
```""")
|
1532 |
with gr.Row():
|
1533 |
bt_calculate = bt_create = gr.Button("Auto Settings")
|
1534 |
-
lb_samples = gr.Label(label="
|
1535 |
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
1536 |
|
1537 |
with gr.Row():
|
1538 |
-
ch_finetune = bt_create = gr.Checkbox(label="
|
1539 |
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
|
1540 |
-
file_checkpoint_train = gr.Textbox(label="Path to the
|
1541 |
|
1542 |
with gr.Row():
|
1543 |
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
@@ -1603,8 +1603,8 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1603 |
mixed_precision.value = mixed_precisionv
|
1604 |
cd_logger.value = cd_loggerv
|
1605 |
|
1606 |
-
ch_stream = gr.Checkbox(label="
|
1607 |
-
txt_info_train = gr.Text(label="
|
1608 |
|
1609 |
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1610 |
|
@@ -1619,18 +1619,18 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1619 |
ch_list_audio = gr.Dropdown(
|
1620 |
choices=list_audios,
|
1621 |
value=select_audio,
|
1622 |
-
label="
|
1623 |
allow_custom_value=True,
|
1624 |
scale=6,
|
1625 |
interactive=True,
|
1626 |
)
|
1627 |
-
bt_stream_audio = gr.Button("
|
1628 |
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1629 |
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1630 |
|
1631 |
with gr.Row():
|
1632 |
-
audio_ref_stream = gr.Audio(label="
|
1633 |
-
audio_gen_stream = gr.Audio(label="
|
1634 |
|
1635 |
ch_list_audio.change(
|
1636 |
fn=get_audio_select,
|
@@ -1730,36 +1730,36 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1730 |
outputs=outputs,
|
1731 |
)
|
1732 |
|
1733 |
-
with gr.TabItem("
|
1734 |
gr.Markdown("""```plaintext
|
1735 |
-
SOS
|
1736 |
```""")
|
1737 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
1738 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
1739 |
|
1740 |
-
nfe_step = gr.Number(label="
|
1741 |
-
ch_use_ema = gr.Checkbox(label="
|
1742 |
with gr.Row():
|
1743 |
cm_checkpoint = gr.Dropdown(
|
1744 |
-
choices=list_checkpoints, value=checkpoint_select, label="
|
1745 |
)
|
1746 |
-
bt_checkpoint_refresh = gr.Button("
|
1747 |
|
1748 |
-
random_sample_infer = gr.Button("
|
1749 |
|
1750 |
-
ref_text = gr.Textbox(label="
|
1751 |
-
ref_audio = gr.Audio(label="
|
1752 |
-
gen_text = gr.Textbox(label="
|
1753 |
|
1754 |
random_sample_infer.click(
|
1755 |
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
|
1756 |
)
|
1757 |
|
1758 |
with gr.Row():
|
1759 |
-
txt_info_gpu = gr.Textbox("", label="
|
1760 |
-
check_button_infer = gr.Button("
|
1761 |
|
1762 |
-
gen_audio = gr.Audio(label="
|
1763 |
|
1764 |
check_button_infer.click(
|
1765 |
fn=infer,
|
@@ -1770,22 +1770,22 @@ SOS : check the use_ema setting (True or False) for your model to see what works
|
|
1770 |
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
1771 |
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
1772 |
|
1773 |
-
with gr.TabItem("
|
1774 |
gr.Markdown("""```plaintext
|
1775 |
-
Reduce the model size from 5GB to 1.3GB. The new checkpoint can be used for inference or fine-tuning afterward, but it cannot be used to continue training
|
1776 |
```""")
|
1777 |
-
txt_path_checkpoint = gr.Text(label="
|
1778 |
-
txt_path_checkpoint_small = gr.Text(label="
|
1779 |
-
ch_safetensors = gr.Checkbox(label="
|
1780 |
-
txt_info_reduse = gr.Text(label="
|
1781 |
-
reduse_button = gr.Button("
|
1782 |
reduse_button.click(
|
1783 |
fn=extract_and_save_ema_model,
|
1784 |
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
|
1785 |
outputs=[txt_info_reduse],
|
1786 |
)
|
1787 |
|
1788 |
-
with gr.TabItem("
|
1789 |
output_box = gr.Textbox(label="GPU and CPU Information", lines=20)
|
1790 |
|
1791 |
def update_stats():
|
|
|
1372 |
with gr.Blocks() as app:
|
1373 |
gr.Markdown(
|
1374 |
"""
|
1375 |
+
# E2/F5 TTS Automatic Finetune
|
1376 |
|
1377 |
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
1378 |
|
|
|
1381 |
|
1382 |
The checkpoints support English and Chinese.
|
1383 |
|
1384 |
+
For tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
|
1385 |
"""
|
1386 |
)
|
1387 |
|
1388 |
with gr.Row():
|
1389 |
projects, projects_selelect = get_list_projects()
|
1390 |
+
tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char", "custom"], value="pinyin")
|
1391 |
+
project_name = gr.Textbox(label="Project Name", value="my_speak")
|
1392 |
+
bt_create = gr.Button("Create a New Project")
|
1393 |
|
1394 |
with gr.Row():
|
1395 |
cm_project = gr.Dropdown(
|
1396 |
choices=projects, value=projects_selelect, label="Project", allow_custom_value=True, scale=6
|
1397 |
)
|
1398 |
+
ch_refresh_project = gr.Button("Refresh", scale=1)
|
1399 |
|
1400 |
bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])
|
1401 |
|
1402 |
with gr.Tabs():
|
1403 |
+
with gr.TabItem("Transcribe Data"):
|
1404 |
gr.Markdown("""```plaintext
|
1405 |
Skip this step if you have your dataset, metadata.csv, and a folder wavs with all the audio files.
|
1406 |
```""")
|
1407 |
|
1408 |
+
ch_manual = gr.Checkbox(label="Audio from Path", value=False)
|
1409 |
|
1410 |
mark_info_transcribe = gr.Markdown(
|
1411 |
"""```plaintext
|
1412 |
+
Place your 'wavs' folder and 'metadata.csv' file in the '{your_project_name}' directory.
|
1413 |
|
1414 |
my_speak/
|
1415 |
β
|
|
|
1421 |
visible=False,
|
1422 |
)
|
1423 |
|
1424 |
+
audio_speaker = gr.File(label="Voice", type="filepath", file_count="multiple")
|
1425 |
+
txt_lang = gr.Text(label="Language", value="English")
|
1426 |
+
bt_transcribe = bt_create = gr.Button("Transcribe")
|
1427 |
+
txt_info_transcribe = gr.Text(label="Info", value="")
|
1428 |
bt_transcribe.click(
|
1429 |
fn=transcribe_all,
|
1430 |
inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
|
|
|
1432 |
)
|
1433 |
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
|
1434 |
|
1435 |
+
random_sample_transcribe = gr.Button("Random Sample")
|
1436 |
|
1437 |
with gr.Row():
|
1438 |
random_text_transcribe = gr.Text(label="Text")
|
|
|
1444 |
outputs=[random_text_transcribe, random_audio_transcribe],
|
1445 |
)
|
1446 |
|
1447 |
+
with gr.TabItem("Vocab Check"):
|
1448 |
gr.Markdown("""```plaintext
|
1449 |
+
Check the vocabulary for fine-tuning Emilia_ZH_EN to ensure all symbols are included. For fine-tuning a new language.
|
1450 |
```""")
|
1451 |
|
1452 |
+
check_button = gr.Button("Check Vocab")
|
1453 |
+
txt_info_check = gr.Text(label="Info", value="")
|
1454 |
|
1455 |
gr.Markdown("""```plaintext
|
1456 |
+
Using the extended model, you can finetune to a new language that is missing symbols in the vocab. This creates a new model with a new vocabulary size and saves it in your ckpts/project folder.
|
1457 |
```""")
|
1458 |
|
1459 |
exp_name_extend = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
|
|
1465 |
placeholder="To add new symbols, make sure to use ',' for each symbol",
|
1466 |
scale=6,
|
1467 |
)
|
1468 |
+
txt_count_symbol = gr.Textbox(label="New Vocab Size", value="", scale=1)
|
1469 |
|
1470 |
+
extend_button = gr.Button("Extend")
|
1471 |
+
txt_info_extend = gr.Text(label="Info", value="")
|
1472 |
|
1473 |
txt_extend.change(vocab_count, inputs=[txt_extend], outputs=[txt_count_symbol])
|
1474 |
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check, txt_extend])
|
|
|
1476 |
fn=vocab_extend, inputs=[cm_project, txt_extend, exp_name_extend], outputs=[txt_info_extend]
|
1477 |
)
|
1478 |
|
1479 |
+
with gr.TabItem("Prepare Data"):
|
1480 |
gr.Markdown("""```plaintext
|
1481 |
+
Skip this step if you have your dataset, raw.arrow, duration.json, and vocab.txt
|
1482 |
```""")
|
1483 |
|
1484 |
gr.Markdown(
|
1485 |
"""```plaintext
|
1486 |
+
Place all your "wavs" folder and your "metadata.csv" file in your project name directory.
|
1487 |
|
1488 |
+
Supported audio formats: "wav", "mp3", "aac", "flac", "m4a", "alac", "ogg", "aiff", "wma", "amr"
|
1489 |
|
1490 |
+
Example wav format:
|
1491 |
my_speak/
|
1492 |
β
|
1493 |
βββ wavs/
|
|
|
1497 |
β
|
1498 |
βββ metadata.csv
|
1499 |
|
1500 |
+
File format metadata.csv:
|
1501 |
|
1502 |
audio1|text1 or audio1.wav|text1 or your_path/audio1.wav|text1
|
1503 |
+
audio2|text1 or audio2.wav|text1 or your_path/audio2.wav|text1
|
1504 |
...
|
1505 |
|
1506 |
```"""
|
1507 |
)
|
1508 |
+
ch_tokenizern = gr.Checkbox(label="Create Vocabulary", value=False, visible=False)
|
1509 |
+
bt_prepare = bt_create = gr.Button("Prepare")
|
1510 |
+
txt_info_prepare = gr.Text(label="Info", value="")
|
1511 |
+
txt_vocab_prepare = gr.Text(label="Vocab", value="")
|
1512 |
|
1513 |
bt_prepare.click(
|
1514 |
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
|
1515 |
)
|
1516 |
|
1517 |
+
random_sample_prepare = gr.Button("Random Sample")
|
1518 |
|
1519 |
with gr.Row():
|
1520 |
random_text_prepare = gr.Text(label="Tokenizer")
|
|
|
1524 |
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
|
1525 |
)
|
1526 |
|
1527 |
+
with gr.TabItem("Train Data"):
|
1528 |
gr.Markdown("""```plaintext
|
1529 |
+
The auto-setting is still experimental. Please make sure that the epochs, save per updates, and last per steps are set correctly, or change them manually as needed.
|
1530 |
If you encounter a memory error, try reducing the batch size per GPU to a smaller number.
|
1531 |
```""")
|
1532 |
with gr.Row():
|
1533 |
bt_calculate = bt_create = gr.Button("Auto Settings")
|
1534 |
+
lb_samples = gr.Label(label="Samples")
|
1535 |
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
|
1536 |
|
1537 |
with gr.Row():
|
1538 |
+
ch_finetune = bt_create = gr.Checkbox(label="Finetune", value=True)
|
1539 |
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
|
1540 |
+
file_checkpoint_train = gr.Textbox(label="Path to the Pretrained Checkpoint", value="")
|
1541 |
|
1542 |
with gr.Row():
|
1543 |
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
|
|
|
1603 |
mixed_precision.value = mixed_precisionv
|
1604 |
cd_logger.value = cd_loggerv
|
1605 |
|
1606 |
+
ch_stream = gr.Checkbox(label="Stream Output Experiment", value=True)
|
1607 |
+
txt_info_train = gr.Text(label="Info", value="")
|
1608 |
|
1609 |
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1610 |
|
|
|
1619 |
ch_list_audio = gr.Dropdown(
|
1620 |
choices=list_audios,
|
1621 |
value=select_audio,
|
1622 |
+
label="Audios",
|
1623 |
allow_custom_value=True,
|
1624 |
scale=6,
|
1625 |
interactive=True,
|
1626 |
)
|
1627 |
+
bt_stream_audio = gr.Button("Refresh", scale=1)
|
1628 |
bt_stream_audio.click(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1629 |
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1630 |
|
1631 |
with gr.Row():
|
1632 |
+
audio_ref_stream = gr.Audio(label="Original", type="filepath", value=select_audio_ref)
|
1633 |
+
audio_gen_stream = gr.Audio(label="Generate", type="filepath", value=select_audio_gen)
|
1634 |
|
1635 |
ch_list_audio.change(
|
1636 |
fn=get_audio_select,
|
|
|
1730 |
outputs=outputs,
|
1731 |
)
|
1732 |
|
1733 |
+
with gr.TabItem("Test Model"):
|
1734 |
gr.Markdown("""```plaintext
|
1735 |
+
SOS: Check the use_ema setting (True or False) for your model to see what works best for you.
|
1736 |
```""")
|
1737 |
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
|
1738 |
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
|
1739 |
|
1740 |
+
nfe_step = gr.Number(label="NFE Step", value=32)
|
1741 |
+
ch_use_ema = gr.Checkbox(label="Use EMA", value=True)
|
1742 |
with gr.Row():
|
1743 |
cm_checkpoint = gr.Dropdown(
|
1744 |
+
choices=list_checkpoints, value=checkpoint_select, label="Checkpoints", allow_custom_value=True
|
1745 |
)
|
1746 |
+
bt_checkpoint_refresh = gr.Button("Refresh")
|
1747 |
|
1748 |
+
random_sample_infer = gr.Button("Random Sample")
|
1749 |
|
1750 |
+
ref_text = gr.Textbox(label="Ref Text")
|
1751 |
+
ref_audio = gr.Audio(label="Audio Ref", type="filepath")
|
1752 |
+
gen_text = gr.Textbox(label="Gen Text")
|
1753 |
|
1754 |
random_sample_infer.click(
|
1755 |
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
|
1756 |
)
|
1757 |
|
1758 |
with gr.Row():
|
1759 |
+
txt_info_gpu = gr.Textbox("", label="Device")
|
1760 |
+
check_button_infer = gr.Button("Infer")
|
1761 |
|
1762 |
+
gen_audio = gr.Audio(label="Audio Gen", type="filepath")
|
1763 |
|
1764 |
check_button_infer.click(
|
1765 |
fn=infer,
|
|
|
1770 |
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
1771 |
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
|
1772 |
|
1773 |
+
with gr.TabItem("Reduce Checkpoint"):
|
1774 |
gr.Markdown("""```plaintext
|
1775 |
+
Reduce the model size from 5GB to 1.3GB. The new checkpoint can be used for inference or fine-tuning afterward, but it cannot be used to continue training.
|
1776 |
```""")
|
1777 |
+
txt_path_checkpoint = gr.Text(label="Path to Checkpoint:")
|
1778 |
+
txt_path_checkpoint_small = gr.Text(label="Path to Output:")
|
1779 |
+
ch_safetensors = gr.Checkbox(label="Safetensors", value="")
|
1780 |
+
txt_info_reduse = gr.Text(label="Info", value="")
|
1781 |
+
reduse_button = gr.Button("Reduce")
|
1782 |
reduse_button.click(
|
1783 |
fn=extract_and_save_ema_model,
|
1784 |
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
|
1785 |
outputs=[txt_info_reduse],
|
1786 |
)
|
1787 |
|
1788 |
+
with gr.TabItem("System Info"):
|
1789 |
output_box = gr.Textbox(label="GPU and CPU Information", lines=20)
|
1790 |
|
1791 |
def update_stats():
|