zkniu commited on
Commit
712d527
·
1 Parent(s): dee0420

update Bigvgan vocoder and F5-bigvgan version, trained on Emilia ZH&EN, 1.25m updates

Browse files
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "src/third_party/BigVGAN"]
2
+ path = src/third_party/BigVGAN
3
+ url = https://github.com/NVIDIA/BigVGAN.git
README.md CHANGED
@@ -46,7 +46,18 @@ cd F5-TTS
46
  pip install -e .
47
  ```
48
 
49
- ### 3. Docker usage
 
 
 
 
 
 
 
 
 
 
 
50
  ```bash
51
  # Build from Dockerfile
52
  docker build -t f5tts:v1 .
 
46
  pip install -e .
47
  ```
48
 
49
+ ### 3. Init submodule( optional, if you want to change the vocoder from vocos to bigvgan)
50
+
51
+ ```bash
52
+ git submodule update --init --recursive
53
+ ```
54
+ After that, you need to change the `src/third_party/BigVGAN/bigvgan.py` by adding the following code at the beginning of the file.
55
+ ```python
56
+ import sys
57
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
58
+ ```
59
+
60
+ ### 4. Docker usage
61
  ```bash
62
  # Build from Dockerfile
63
  docker build -t f5tts:v1 .
src/f5_tts/api.py CHANGED
@@ -1,24 +1,18 @@
1
  import random
2
  import sys
3
- import tqdm
4
  from importlib.resources import files
5
 
6
  import soundfile as sf
7
  import torch
 
8
  from cached_path import cached_path
9
 
 
 
 
 
10
  from f5_tts.model import DiT, UNetT
11
  from f5_tts.model.utils import seed_everything
12
- from f5_tts.infer.utils_infer import (
13
- load_vocoder,
14
- load_model,
15
- infer_process,
16
- remove_silence_for_generated_wav,
17
- save_spectrogram,
18
- preprocess_ref_audio_text,
19
- target_sample_rate,
20
- hop_length,
21
- )
22
 
23
 
24
  class F5TTS:
@@ -29,6 +23,7 @@ class F5TTS:
29
  vocab_file="",
30
  ode_method="euler",
31
  use_ema=True,
 
32
  local_path=None,
33
  device=None,
34
  ):
@@ -44,11 +39,11 @@ class F5TTS:
44
  )
45
 
46
  # Load models
47
- self.load_vocoder_model(local_path)
48
  self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
49
 
50
- def load_vocoder_model(self, local_path):
51
- self.vocoder = load_vocoder(local_path is not None, local_path, self.device)
52
 
53
  def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
54
  if model_type == "F5-TTS":
 
1
  import random
2
  import sys
 
3
  from importlib.resources import files
4
 
5
  import soundfile as sf
6
  import torch
7
+ import tqdm
8
  from cached_path import cached_path
9
 
10
+ from f5_tts.infer.utils_infer import (hop_length, infer_process, load_model,
11
+ load_vocoder, preprocess_ref_audio_text,
12
+ remove_silence_for_generated_wav,
13
+ save_spectrogram, target_sample_rate)
14
  from f5_tts.model import DiT, UNetT
15
  from f5_tts.model.utils import seed_everything
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
  class F5TTS:
 
23
  vocab_file="",
24
  ode_method="euler",
25
  use_ema=True,
26
+ vocoder_name="vocos",
27
  local_path=None,
28
  device=None,
29
  ):
 
39
  )
40
 
41
  # Load models
42
+ self.load_vocoder_model(vocoder_name, local_path)
43
  self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
44
 
45
+ def load_vocoder_model(self, vocoder_name, local_path):
46
+ self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
47
 
48
  def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
49
  if model_type == "F5-TTS":
src/f5_tts/eval/eval_infer_batch.py CHANGED
@@ -1,26 +1,23 @@
1
- import sys
2
  import os
 
3
 
4
  sys.path.append(os.getcwd())
5
 
6
- import time
7
- from tqdm import tqdm
8
  import argparse
 
9
  from importlib.resources import files
10
 
11
  import torch
12
  import torchaudio
13
  from accelerate import Accelerator
14
- from vocos import Vocos
15
 
16
- from f5_tts.model import CFM, UNetT, DiT
 
 
 
 
17
  from f5_tts.model.utils import get_tokenizer
18
- from f5_tts.infer.utils_infer import load_checkpoint
19
- from f5_tts.eval.utils_eval import (
20
- get_seedtts_testset_metainfo,
21
- get_librispeech_test_clean_metainfo,
22
- get_inference_prompt,
23
- )
24
 
25
  accelerator = Accelerator()
26
  device = f"cuda:{accelerator.process_index}"
@@ -31,8 +28,12 @@ device = f"cuda:{accelerator.process_index}"
31
  target_sample_rate = 24000
32
  n_mel_channels = 100
33
  hop_length = 256
 
 
 
34
  target_rms = 0.1
35
 
 
36
  tokenizer = "pinyin"
37
  rel_path = str(files("f5_tts").joinpath("../../"))
38
 
@@ -123,14 +124,11 @@ def main():
123
 
124
  # Vocoder model
125
  local = False
126
- if local:
127
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
128
- vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
129
- state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
130
- vocos.load_state_dict(state_dict)
131
- vocos.eval()
132
- else:
133
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
134
 
135
  # Tokenizer
136
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
@@ -139,9 +137,12 @@ def main():
139
  model = CFM(
140
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
141
  mel_spec_kwargs=dict(
142
- target_sample_rate=target_sample_rate,
143
- n_mel_channels=n_mel_channels,
144
  hop_length=hop_length,
 
 
 
 
145
  ),
146
  odeint_kwargs=dict(
147
  method=ode_method,
@@ -149,7 +150,8 @@ def main():
149
  vocab_char_map=vocab_char_map,
150
  ).to(device)
151
 
152
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
153
 
154
  if not os.path.exists(output_dir) and accelerator.is_main_process:
155
  os.makedirs(output_dir)
@@ -178,14 +180,18 @@ def main():
178
  no_ref_audio=no_ref_audio,
179
  seed=seed,
180
  )
181
- # Final result
182
- for i, gen in enumerate(generated):
183
- gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
184
- gen_mel_spec = gen.permute(0, 2, 1)
185
- generated_wave = vocos.decode(gen_mel_spec.cpu())
186
- if ref_rms_list[i] < target_rms:
187
- generated_wave = generated_wave * ref_rms_list[i] / target_rms
188
- torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
 
 
 
 
189
 
190
  accelerator.wait_for_everyone()
191
  if accelerator.is_main_process:
 
 
1
  import os
2
+ import sys
3
 
4
  sys.path.append(os.getcwd())
5
 
 
 
6
  import argparse
7
+ import time
8
  from importlib.resources import files
9
 
10
  import torch
11
  import torchaudio
12
  from accelerate import Accelerator
13
+ from tqdm import tqdm
14
 
15
+ from f5_tts.eval.utils_eval import (get_inference_prompt,
16
+ get_librispeech_test_clean_metainfo,
17
+ get_seedtts_testset_metainfo)
18
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
19
+ from f5_tts.model import CFM, DiT, UNetT
20
  from f5_tts.model.utils import get_tokenizer
 
 
 
 
 
 
21
 
22
  accelerator = Accelerator()
23
  device = f"cuda:{accelerator.process_index}"
 
28
  target_sample_rate = 24000
29
  n_mel_channels = 100
30
  hop_length = 256
31
+ win_length = 1024
32
+ n_fft = 1024
33
+ extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
34
  target_rms = 0.1
35
 
36
+
37
  tokenizer = "pinyin"
38
  rel_path = str(files("f5_tts").joinpath("../../"))
39
 
 
124
 
125
  # Vocoder model
126
  local = False
127
+ if extract_backend == "vocos":
128
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
129
+ elif extract_backend == "bigvgan":
130
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
131
+ vocoder = load_vocoder(vocoder_name=extract_backend, is_local=local, local_path=vocoder_local_path)
 
 
 
132
 
133
  # Tokenizer
134
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
 
137
  model = CFM(
138
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
139
  mel_spec_kwargs=dict(
140
+ n_fft=n_fft,
 
141
  hop_length=hop_length,
142
+ win_length=win_length,
143
+ n_mel_channels=n_mel_channels,
144
+ target_sample_rate=target_sample_rate,
145
+ extract_backend=extract_backend,
146
  ),
147
  odeint_kwargs=dict(
148
  method=ode_method,
 
150
  vocab_char_map=vocab_char_map,
151
  ).to(device)
152
 
153
+ dtype = torch.float16 if extract_backend == "vocos" else torch.float32
154
+ model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
155
 
156
  if not os.path.exists(output_dir) and accelerator.is_main_process:
157
  os.makedirs(output_dir)
 
180
  no_ref_audio=no_ref_audio,
181
  seed=seed,
182
  )
183
+ # Final result
184
+ for i, gen in enumerate(generated):
185
+ gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
186
+ gen_mel_spec = gen.permute(0, 2, 1)
187
+ if extract_backend == "vocos":
188
+ generated_wave = vocoder.decode(gen_mel_spec.cpu())
189
+ elif extract_backend == "bigvgan":
190
+ generated_wave = vocoder(gen_mel_spec)
191
+
192
+ if ref_rms_list[i] < target_rms:
193
+ generated_wave = generated_wave * ref_rms_list[i] / target_rms
194
+ torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
195
 
196
  accelerator.wait_for_everyone()
197
  if accelerator.is_main_process:
src/f5_tts/eval/utils_eval.py CHANGED
@@ -2,15 +2,15 @@ import math
2
  import os
3
  import random
4
  import string
5
- from tqdm import tqdm
6
 
7
  import torch
8
  import torch.nn.functional as F
9
  import torchaudio
 
10
 
 
11
  from f5_tts.model.modules import MelSpec
12
  from f5_tts.model.utils import convert_char_to_pinyin
13
- from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
14
 
15
 
16
  # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
@@ -74,8 +74,11 @@ def get_inference_prompt(
74
  tokenizer="pinyin",
75
  polyphone=True,
76
  target_sample_rate=24000,
 
 
77
  n_mel_channels=100,
78
  hop_length=256,
 
79
  target_rms=0.1,
80
  use_truth_duration=False,
81
  infer_batch_size=1,
@@ -94,7 +97,12 @@ def get_inference_prompt(
94
  )
95
 
96
  mel_spectrogram = MelSpec(
97
- target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
 
 
 
 
 
98
  )
99
 
100
  for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
 
2
  import os
3
  import random
4
  import string
 
5
 
6
  import torch
7
  import torch.nn.functional as F
8
  import torchaudio
9
+ from tqdm import tqdm
10
 
11
+ from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
12
  from f5_tts.model.modules import MelSpec
13
  from f5_tts.model.utils import convert_char_to_pinyin
 
14
 
15
 
16
  # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
 
74
  tokenizer="pinyin",
75
  polyphone=True,
76
  target_sample_rate=24000,
77
+ n_fft=1024,
78
+ win_length=1024,
79
  n_mel_channels=100,
80
  hop_length=256,
81
+ extract_backend="bigvgan",
82
  target_rms=0.1,
83
  use_truth_duration=False,
84
  infer_batch_size=1,
 
97
  )
98
 
99
  mel_spectrogram = MelSpec(
100
+ n_fft=n_fft,
101
+ hop_length=hop_length,
102
+ win_length=win_length,
103
+ n_mel_channels=n_mel_channels,
104
+ target_sample_rate=target_sample_rate,
105
+ extract_backend=extract_backend,
106
  )
107
 
108
  for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
src/f5_tts/infer/infer_cli.py CHANGED
@@ -2,23 +2,18 @@ import argparse
2
  import codecs
3
  import os
4
  import re
5
- from pathlib import Path
6
  from importlib.resources import files
 
7
 
8
  import numpy as np
9
  import soundfile as sf
10
  import tomli
11
  from cached_path import cached_path
12
 
 
 
 
13
  from f5_tts.model import DiT, UNetT
14
- from f5_tts.infer.utils_infer import (
15
- load_vocoder,
16
- load_model,
17
- preprocess_ref_audio_text,
18
- infer_process,
19
- remove_silence_for_generated_wav,
20
- )
21
-
22
 
23
  parser = argparse.ArgumentParser(
24
  prog="python3 infer-cli.py",
@@ -70,6 +65,7 @@ parser.add_argument(
70
  "--remove_silence",
71
  help="Remove silence.",
72
  )
 
73
  parser.add_argument(
74
  "--load_vocoder_from_local",
75
  action="store_true",
@@ -111,9 +107,14 @@ remove_silence = args.remove_silence if args.remove_silence else config["remove_
111
  speed = args.speed
112
  wave_path = Path(output_dir) / "infer_cli_out.wav"
113
  # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
114
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
 
 
 
115
 
116
- vocoder = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
 
 
117
 
118
 
119
  # load models
@@ -136,6 +137,12 @@ elif model == "E2-TTS":
136
  ckpt_step = 1200000
137
  ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
138
  # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
 
 
 
 
 
 
139
 
140
  print(f"Using {model}...")
141
  ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
 
2
  import codecs
3
  import os
4
  import re
 
5
  from importlib.resources import files
6
+ from pathlib import Path
7
 
8
  import numpy as np
9
  import soundfile as sf
10
  import tomli
11
  from cached_path import cached_path
12
 
13
+ from f5_tts.infer.utils_infer import (infer_process, load_model, load_vocoder,
14
+ preprocess_ref_audio_text,
15
+ remove_silence_for_generated_wav)
16
  from f5_tts.model import DiT, UNetT
 
 
 
 
 
 
 
 
17
 
18
  parser = argparse.ArgumentParser(
19
  prog="python3 infer-cli.py",
 
65
  "--remove_silence",
66
  help="Remove silence.",
67
  )
68
+ parser.add_argument("--vocoder_name", type=str, default="vocos", choices=["vocos", "bigvgan"], help="vocoder name")
69
  parser.add_argument(
70
  "--load_vocoder_from_local",
71
  action="store_true",
 
107
  speed = args.speed
108
  wave_path = Path(output_dir) / "infer_cli_out.wav"
109
  # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
110
+ if args.vocoder_name == "vocos":
111
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
112
+ elif args.vocoder_name == "bigvgan":
113
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
114
 
115
+ vocoder = load_vocoder(
116
+ vocoder_name=args.vocoder_name, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path
117
+ )
118
 
119
 
120
  # load models
 
137
  ckpt_step = 1200000
138
  ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
139
  # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
140
+ elif args.vocoder_name == "bigvgan": # TODO: need to test
141
+ repo_name = "F5-TTS"
142
+ exp_name = "F5TTS_Base_bigvgan"
143
+ ckpt_step = 1250000
144
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
145
+
146
 
147
  print(f"Using {model}...")
148
  ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
src/f5_tts/infer/speech_edit.py CHANGED
@@ -3,17 +3,11 @@ import os
3
  import torch
4
  import torch.nn.functional as F
5
  import torchaudio
6
- from vocos import Vocos
7
-
8
- from f5_tts.model import CFM, UNetT, DiT
9
- from f5_tts.model.utils import (
10
- get_tokenizer,
11
- convert_char_to_pinyin,
12
- )
13
- from f5_tts.infer.utils_infer import (
14
- load_checkpoint,
15
- save_spectrogram,
16
- )
17
 
18
  device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
19
 
@@ -23,6 +17,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
23
  target_sample_rate = 24000
24
  n_mel_channels = 100
25
  hop_length = 256
 
 
 
26
  target_rms = 0.1
27
 
28
  tokenizer = "pinyin"
@@ -89,15 +86,11 @@ if not os.path.exists(output_dir):
89
 
90
  # Vocoder model
91
  local = False
92
- if local:
93
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
94
- vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
95
- state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
96
- vocos.load_state_dict(state_dict)
97
-
98
- vocos.eval()
99
- else:
100
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
101
 
102
  # Tokenizer
103
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
@@ -106,9 +99,12 @@ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
106
  model = CFM(
107
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
108
  mel_spec_kwargs=dict(
109
- target_sample_rate=target_sample_rate,
110
- n_mel_channels=n_mel_channels,
111
  hop_length=hop_length,
 
 
 
 
112
  ),
113
  odeint_kwargs=dict(
114
  method=ode_method,
@@ -116,7 +112,8 @@ model = CFM(
116
  vocab_char_map=vocab_char_map,
117
  ).to(device)
118
 
119
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
120
 
121
  # Audio
122
  audio, sr = torchaudio.load(audio_to_edit)
@@ -181,11 +178,15 @@ print(f"Generated mel: {generated.shape}")
181
  # Final result
182
  generated = generated.to(torch.float32)
183
  generated = generated[:, ref_audio_len:, :]
184
- generated_mel_spec = generated.permute(0, 2, 1)
185
- generated_wave = vocos.decode(generated_mel_spec.cpu())
 
 
 
 
186
  if rms < target_rms:
187
  generated_wave = generated_wave * rms / target_rms
188
 
189
- save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
190
- torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
191
  print(f"Generated wav: {generated_wave.shape}")
 
3
  import torch
4
  import torch.nn.functional as F
5
  import torchaudio
6
+
7
+ from f5_tts.infer.utils_infer import (load_checkpoint, load_vocoder,
8
+ save_spectrogram)
9
+ from f5_tts.model import CFM, DiT, UNetT
10
+ from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
 
 
 
 
 
 
11
 
12
  device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
13
 
 
17
  target_sample_rate = 24000
18
  n_mel_channels = 100
19
  hop_length = 256
20
+ win_length = 1024
21
+ n_fft = 1024
22
+ extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
23
  target_rms = 0.1
24
 
25
  tokenizer = "pinyin"
 
86
 
87
  # Vocoder model
88
  local = False
89
+ if extract_backend == "vocos":
90
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
91
+ elif extract_backend == "bigvgan":
92
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
93
+ vocoder = load_vocoder(vocoder_name=extract_backend, is_local=local, local_path=vocoder_local_path)
 
 
 
 
94
 
95
  # Tokenizer
96
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
 
99
  model = CFM(
100
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
101
  mel_spec_kwargs=dict(
102
+ n_fft=n_fft,
 
103
  hop_length=hop_length,
104
+ win_length=win_length,
105
+ n_mel_channels=n_mel_channels,
106
+ target_sample_rate=target_sample_rate,
107
+ extract_backend=extract_backend,
108
  ),
109
  odeint_kwargs=dict(
110
  method=ode_method,
 
112
  vocab_char_map=vocab_char_map,
113
  ).to(device)
114
 
115
+ dtype = torch.float16 if extract_backend == "vocos" else torch.float32
116
+ model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
117
 
118
  # Audio
119
  audio, sr = torchaudio.load(audio_to_edit)
 
178
  # Final result
179
  generated = generated.to(torch.float32)
180
  generated = generated[:, ref_audio_len:, :]
181
+ gen_mel_spec = generated.permute(0, 2, 1)
182
+ if extract_backend == "vocos":
183
+ generated_wave = vocoder.decode(gen_mel_spec.cpu())
184
+ elif extract_backend == "bigvgan":
185
+ generated_wave = vocoder(gen_mel_spec)
186
+
187
  if rms < target_rms:
188
  generated_wave = generated_wave * rms / target_rms
189
 
190
+ save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
191
+ torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
192
  print(f"Generated wav: {generated_wave.shape}")
src/f5_tts/infer/utils_infer.py CHANGED
@@ -1,6 +1,10 @@
1
  # A unified script for inference process
2
  # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
 
 
3
 
 
 
4
  import hashlib
5
  import re
6
  import tempfile
@@ -34,6 +38,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
34
  target_sample_rate = 24000
35
  n_mel_channels = 100
36
  hop_length = 256
 
 
 
37
  target_rms = 0.1
38
  cross_fade_duration = 0.15
39
  ode_method = "euler"
@@ -80,17 +87,28 @@ def chunk_text(text, max_chars=135):
80
 
81
 
82
  # load vocoder
83
- def load_vocoder(is_local=False, local_path="", device=device):
84
- if is_local:
85
- print(f"Load vocos from local path {local_path}")
86
- vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
87
- state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
88
- vocos.load_state_dict(state_dict)
89
- vocos.eval()
90
- else:
91
- print("Download Vocos from huggingface charactr/vocos-mel-24khz")
92
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
93
- return vocos
 
 
 
 
 
 
 
 
 
 
 
94
 
95
 
96
  # load asr pipeline
@@ -111,9 +129,8 @@ def initialize_asr_pipeline(device=device):
111
  # load model checkpoint for inference
112
 
113
 
114
- def load_checkpoint(model, ckpt_path, device, use_ema=True):
115
- if device == "cuda":
116
- model = model.half()
117
 
118
  ckpt_type = ckpt_path.split(".")[-1]
119
  if ckpt_type == "safetensors":
@@ -156,9 +173,12 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
156
  model = CFM(
157
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
158
  mel_spec_kwargs=dict(
159
- target_sample_rate=target_sample_rate,
160
- n_mel_channels=n_mel_channels,
161
  hop_length=hop_length,
 
 
 
 
162
  ),
163
  odeint_kwargs=dict(
164
  method=ode_method,
@@ -166,7 +186,8 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
166
  vocab_char_map=vocab_char_map,
167
  ).to(device)
168
 
169
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
170
 
171
  return model
172
 
@@ -359,18 +380,21 @@ def infer_batch_process(
359
  sway_sampling_coef=sway_sampling_coef,
360
  )
361
 
362
- generated = generated.to(torch.float32)
363
- generated = generated[:, ref_audio_len:, :]
364
- generated_mel_spec = generated.permute(0, 2, 1)
365
- generated_wave = vocoder.decode(generated_mel_spec.cpu())
366
- if rms < target_rms:
367
- generated_wave = generated_wave * rms / target_rms
368
-
369
- # wav -> numpy
370
- generated_wave = generated_wave.squeeze().cpu().numpy()
371
-
372
- generated_waves.append(generated_wave)
373
- spectrograms.append(generated_mel_spec[0].cpu().numpy())
 
 
 
374
 
375
  # Combine all generated waves with cross-fading
376
  if cross_fade_duration <= 0:
 
1
  # A unified script for inference process
2
  # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
3
+ import os
4
+ import sys
5
 
6
+ sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/")
7
+ from third_party.BigVGAN import bigvgan
8
  import hashlib
9
  import re
10
  import tempfile
 
38
  target_sample_rate = 24000
39
  n_mel_channels = 100
40
  hop_length = 256
41
+ win_length = 1024
42
+ n_fft = 1024
43
+ extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
44
  target_rms = 0.1
45
  cross_fade_duration = 0.15
46
  ode_method = "euler"
 
87
 
88
 
89
  # load vocoder
90
+ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device):
91
+ if vocoder_name == "vocos":
92
+ if is_local:
93
+ print(f"Load vocos from local path {local_path}")
94
+ vocoder = Vocos.from_hparams(f"{local_path}/config.yaml")
95
+ state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu")
96
+ vocoder.load_state_dict(state_dict)
97
+ vocoder.eval()
98
+ vocoder = vocoder.eval().to(device)
99
+ else:
100
+ print("Download Vocos from huggingface charactr/vocos-mel-24khz")
101
+ vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
102
+ elif vocoder_name == "bigvgan":
103
+ if is_local:
104
+ """download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
105
+ vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
106
+ else:
107
+ vocoder = bigvgan.BigVGAN.from_pretrained("nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False)
108
+
109
+ vocoder.remove_weight_norm()
110
+ vocoder = vocoder.eval().to(device)
111
+ return vocoder
112
 
113
 
114
  # load asr pipeline
 
129
  # load model checkpoint for inference
130
 
131
 
132
+ def load_checkpoint(model, ckpt_path, device, dtype, use_ema=True):
133
+ model = model.to(dtype)
 
134
 
135
  ckpt_type = ckpt_path.split(".")[-1]
136
  if ckpt_type == "safetensors":
 
173
  model = CFM(
174
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
175
  mel_spec_kwargs=dict(
176
+ n_fft=n_fft,
 
177
  hop_length=hop_length,
178
+ win_length=win_length,
179
+ n_mel_channels=n_mel_channels,
180
+ target_sample_rate=target_sample_rate,
181
+ extract_backend=extract_backend,
182
  ),
183
  odeint_kwargs=dict(
184
  method=ode_method,
 
186
  vocab_char_map=vocab_char_map,
187
  ).to(device)
188
 
189
+ dtype = torch.float16 if extract_backend == "vocos" else torch.float32
190
+ model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
191
 
192
  return model
193
 
 
380
  sway_sampling_coef=sway_sampling_coef,
381
  )
382
 
383
+ generated = generated.to(torch.float32)
384
+ generated = generated[:, ref_audio_len:, :]
385
+ generated_mel_spec = generated.permute(0, 2, 1)
386
+ if extract_backend == "vocos":
387
+ generated_wave = vocoder.decode(generated_mel_spec.cpu())
388
+ elif extract_backend == "bigvgan":
389
+ generated_wave = vocoder(generated_mel_spec)
390
+ if rms < target_rms:
391
+ generated_wave = generated_wave * rms / target_rms
392
+
393
+ # wav -> numpy
394
+ generated_wave = generated_wave.squeeze().cpu().numpy()
395
+
396
+ generated_waves.append(generated_wave)
397
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
398
 
399
  # Combine all generated waves with cross-fading
400
  if cross_fade_duration <= 0:
src/f5_tts/model/cfm.py CHANGED
@@ -8,25 +8,19 @@ d - dimension
8
  """
9
 
10
  from __future__ import annotations
11
- from typing import Callable
12
  from random import random
 
13
 
14
  import torch
15
- from torch import nn
16
  import torch.nn.functional as F
 
17
  from torch.nn.utils.rnn import pad_sequence
18
-
19
  from torchdiffeq import odeint
20
 
21
  from f5_tts.model.modules import MelSpec
22
- from f5_tts.model.utils import (
23
- default,
24
- exists,
25
- list_str_to_idx,
26
- list_str_to_tensor,
27
- lens_to_mask,
28
- mask_from_frac_lengths,
29
- )
30
 
31
 
32
  class CFM(nn.Module):
@@ -99,8 +93,10 @@ class CFM(nn.Module):
99
  ):
100
  self.eval()
101
 
102
- if next(self.parameters()).dtype == torch.float16:
103
- cond = cond.half()
 
 
104
 
105
  # raw wave
106
 
 
8
  """
9
 
10
  from __future__ import annotations
11
+
12
  from random import random
13
+ from typing import Callable
14
 
15
  import torch
 
16
  import torch.nn.functional as F
17
+ from torch import nn
18
  from torch.nn.utils.rnn import pad_sequence
 
19
  from torchdiffeq import odeint
20
 
21
  from f5_tts.model.modules import MelSpec
22
+ from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
23
+ list_str_to_tensor, mask_from_frac_lengths)
 
 
 
 
 
 
24
 
25
 
26
  class CFM(nn.Module):
 
93
  ):
94
  self.eval()
95
 
96
+ assert next(self.parameters()).dtype == torch.float32 or next(self.parameters()).dtype == torch.float16, print(
97
+ "Only support fp16 and fp32 inference currently"
98
+ )
99
+ cond = cond.to(next(self.parameters()).dtype)
100
 
101
  # raw wave
102
 
src/f5_tts/model/dataset.py CHANGED
@@ -1,15 +1,15 @@
1
  import json
2
  import random
3
  from importlib.resources import files
4
- from tqdm import tqdm
5
 
6
  import torch
7
  import torch.nn.functional as F
8
  import torchaudio
 
 
9
  from torch import nn
10
  from torch.utils.data import Dataset, Sampler
11
- from datasets import load_from_disk
12
- from datasets import Dataset as Dataset_
13
 
14
  from f5_tts.model.modules import MelSpec
15
  from f5_tts.model.utils import default
@@ -22,12 +22,21 @@ class HFDataset(Dataset):
22
  target_sample_rate=24_000,
23
  n_mel_channels=100,
24
  hop_length=256,
 
 
 
25
  ):
26
  self.data = hf_dataset
27
  self.target_sample_rate = target_sample_rate
28
  self.hop_length = hop_length
 
29
  self.mel_spectrogram = MelSpec(
30
- target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
 
 
 
 
 
31
  )
32
 
33
  def get_frame_len(self, index):
@@ -79,6 +88,9 @@ class CustomDataset(Dataset):
79
  target_sample_rate=24_000,
80
  hop_length=256,
81
  n_mel_channels=100,
 
 
 
82
  preprocessed_mel=False,
83
  mel_spec_module: nn.Module | None = None,
84
  ):
@@ -86,15 +98,21 @@ class CustomDataset(Dataset):
86
  self.durations = durations
87
  self.target_sample_rate = target_sample_rate
88
  self.hop_length = hop_length
 
 
 
89
  self.preprocessed_mel = preprocessed_mel
90
 
91
  if not preprocessed_mel:
92
  self.mel_spectrogram = default(
93
  mel_spec_module,
94
  MelSpec(
95
- target_sample_rate=target_sample_rate,
96
  hop_length=hop_length,
 
97
  n_mel_channels=n_mel_channels,
 
 
98
  ),
99
  )
100
 
 
1
  import json
2
  import random
3
  from importlib.resources import files
 
4
 
5
  import torch
6
  import torch.nn.functional as F
7
  import torchaudio
8
+ from datasets import Dataset as Dataset_
9
+ from datasets import load_from_disk
10
  from torch import nn
11
  from torch.utils.data import Dataset, Sampler
12
+ from tqdm import tqdm
 
13
 
14
  from f5_tts.model.modules import MelSpec
15
  from f5_tts.model.utils import default
 
22
  target_sample_rate=24_000,
23
  n_mel_channels=100,
24
  hop_length=256,
25
+ n_fft=1024,
26
+ win_length=1024,
27
+ extract_backend="vocos",
28
  ):
29
  self.data = hf_dataset
30
  self.target_sample_rate = target_sample_rate
31
  self.hop_length = hop_length
32
+
33
  self.mel_spectrogram = MelSpec(
34
+ n_fft=n_fft,
35
+ hop_length=hop_length,
36
+ win_length=win_length,
37
+ n_mel_channels=n_mel_channels,
38
+ target_sample_rate=target_sample_rate,
39
+ extract_backend=extract_backend,
40
  )
41
 
42
  def get_frame_len(self, index):
 
88
  target_sample_rate=24_000,
89
  hop_length=256,
90
  n_mel_channels=100,
91
+ n_fft=1024,
92
+ win_length=1024,
93
+ extract_backend="vocos",
94
  preprocessed_mel=False,
95
  mel_spec_module: nn.Module | None = None,
96
  ):
 
98
  self.durations = durations
99
  self.target_sample_rate = target_sample_rate
100
  self.hop_length = hop_length
101
+ self.n_fft = n_fft
102
+ self.win_length = win_length
103
+ self.extract_backend = extract_backend
104
  self.preprocessed_mel = preprocessed_mel
105
 
106
  if not preprocessed_mel:
107
  self.mel_spectrogram = default(
108
  mel_spec_module,
109
  MelSpec(
110
+ n_fft=n_fft,
111
  hop_length=hop_length,
112
+ win_length=win_length,
113
  n_mel_channels=n_mel_channels,
114
+ target_sample_rate=target_sample_rate,
115
+ extract_backend=extract_backend,
116
  ),
117
  )
118
 
src/f5_tts/model/modules.py CHANGED
@@ -8,61 +8,173 @@ d - dimension
8
  """
9
 
10
  from __future__ import annotations
11
- from typing import Optional
12
  import math
 
13
 
14
  import torch
15
- from torch import nn
16
  import torch.nn.functional as F
17
  import torchaudio
18
-
 
19
  from x_transformers.x_transformers import apply_rotary_pos_emb
20
 
21
-
22
  # raw wav to mel spec
23
 
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  class MelSpec(nn.Module):
26
  def __init__(
27
  self,
28
- filter_length=1024,
29
  hop_length=256,
30
  win_length=1024,
31
  n_mel_channels=100,
32
  target_sample_rate=24_000,
33
- normalize=False,
34
- power=1,
35
- norm=None,
36
- center=True,
37
  ):
38
  super().__init__()
39
- self.n_mel_channels = n_mel_channels
40
-
41
- self.mel_stft = torchaudio.transforms.MelSpectrogram(
42
- sample_rate=target_sample_rate,
43
- n_fft=filter_length,
44
- win_length=win_length,
45
- hop_length=hop_length,
46
- n_mels=n_mel_channels,
47
- power=power,
48
- center=center,
49
- normalized=normalize,
50
- norm=norm,
51
  )
52
 
53
- self.register_buffer("dummy", torch.tensor(0), persistent=False)
 
 
 
 
54
 
55
- def forward(self, inp):
56
- if len(inp.shape) == 3:
57
- inp = inp.squeeze(1) # 'b 1 nw -> b nw'
 
58
 
59
- assert len(inp.shape) == 2
60
 
61
- if self.dummy.device != inp.device:
62
- self.to(inp.device)
 
 
 
 
 
 
 
 
 
 
63
 
64
- mel = self.mel_stft(inp)
65
- mel = mel.clamp(min=1e-5).log()
66
  return mel
67
 
68
 
 
8
  """
9
 
10
  from __future__ import annotations
11
+
12
  import math
13
+ from typing import Optional
14
 
15
  import torch
 
16
  import torch.nn.functional as F
17
  import torchaudio
18
+ from librosa.filters import mel as librosa_mel_fn
19
+ from torch import nn
20
  from x_transformers.x_transformers import apply_rotary_pos_emb
21
 
 
22
  # raw wav to mel spec
23
 
24
 
25
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
26
+ return torch.log(torch.clamp(x, min=clip_val) * C)
27
+
28
+
29
+ def dynamic_range_decompression_torch(x, C=1):
30
+ return torch.exp(x) / C
31
+
32
+
33
+ def spectral_normalize_torch(magnitudes):
34
+ return dynamic_range_compression_torch(magnitudes)
35
+
36
+
37
+ mel_basis_cache = {}
38
+ hann_window_cache = {}
39
+
40
+
41
+ # BigVGAN extract mel spectrogram
42
+ def mel_spectrogram(
43
+ y: torch.Tensor,
44
+ n_fft: int,
45
+ num_mels: int,
46
+ sampling_rate: int,
47
+ hop_size: int,
48
+ win_size: int,
49
+ fmin: int,
50
+ fmax: int = None,
51
+ center: bool = False,
52
+ ) -> torch.Tensor:
53
+ """Copy from https://github.com/NVIDIA/BigVGAN/tree/main"""
54
+ device = y.device
55
+ key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
56
+
57
+ if key not in mel_basis_cache:
58
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
59
+ mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
60
+ hann_window_cache[key] = torch.hann_window(win_size).to(device)
61
+
62
+ mel_basis = mel_basis_cache[key]
63
+ hann_window = hann_window_cache[key]
64
+
65
+ padding = (n_fft - hop_size) // 2
66
+ y = torch.nn.functional.pad(y.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
67
+
68
+ spec = torch.stft(
69
+ y,
70
+ n_fft,
71
+ hop_length=hop_size,
72
+ win_length=win_size,
73
+ window=hann_window,
74
+ center=center,
75
+ pad_mode="reflect",
76
+ normalized=False,
77
+ onesided=True,
78
+ return_complex=True,
79
+ )
80
+ spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
81
+
82
+ mel_spec = torch.matmul(mel_basis, spec)
83
+ mel_spec = spectral_normalize_torch(mel_spec)
84
+
85
+ return mel_spec
86
+
87
+
88
+ def get_bigvgan_mel_spectrogram(
89
+ waveform,
90
+ n_fft=1024,
91
+ n_mel_channels=100,
92
+ target_sample_rate=24000,
93
+ hop_length=256,
94
+ win_length=1024,
95
+ ):
96
+ return mel_spectrogram(
97
+ waveform,
98
+ n_fft, # 1024
99
+ n_mel_channels, # 100
100
+ target_sample_rate, # 24000
101
+ hop_length, # 256
102
+ win_length, # 1024
103
+ fmin=0, # 0
104
+ fmax=None, # null
105
+ )
106
+
107
+
108
+ def get_vocos_mel_spectrogram(
109
+ waveform,
110
+ n_fft=1024,
111
+ n_mel_channels=100,
112
+ target_sample_rate=24000,
113
+ hop_length=256,
114
+ win_length=1024,
115
+ ):
116
+ mel_stft = torchaudio.transforms.MelSpectrogram(
117
+ sample_rate=target_sample_rate,
118
+ n_fft=n_fft,
119
+ win_length=win_length,
120
+ hop_length=hop_length,
121
+ n_mels=n_mel_channels,
122
+ power=1,
123
+ center=True,
124
+ normalized=False,
125
+ norm=None,
126
+ )
127
+ if len(waveform.shape) == 3:
128
+ waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
129
+
130
+ assert len(waveform.shape) == 2
131
+
132
+ mel = mel_stft(waveform)
133
+ mel = mel.clamp(min=1e-5).log()
134
+ return mel
135
+
136
+
137
  class MelSpec(nn.Module):
138
  def __init__(
139
  self,
140
+ n_fft=1024,
141
  hop_length=256,
142
  win_length=1024,
143
  n_mel_channels=100,
144
  target_sample_rate=24_000,
145
+ extract_backend="vocos",
 
 
 
146
  ):
147
  super().__init__()
148
+ assert extract_backend in ["vocos", "bigvgan"], print(
149
+ "We only support two extract mel backend: vocos or bigvgan"
 
 
 
 
 
 
 
 
 
 
150
  )
151
 
152
+ self.n_fft = n_fft
153
+ self.hop_length = hop_length
154
+ self.win_length = win_length
155
+ self.n_mel_channels = n_mel_channels
156
+ self.target_sample_rate = target_sample_rate
157
 
158
+ if extract_backend == "vocos":
159
+ self.extractor = get_vocos_mel_spectrogram
160
+ elif extract_backend == "bigvgan":
161
+ self.extractor = get_bigvgan_mel_spectrogram
162
 
163
+ self.register_buffer("dummy", torch.tensor(0), persistent=False)
164
 
165
+ def forward(self, wav):
166
+ if self.dummy.device != wav.device:
167
+ self.to(wav.device)
168
+
169
+ mel = self.extractor(
170
+ waveform=wav,
171
+ n_fft=self.n_fft,
172
+ n_mel_channels=self.n_mel_channels,
173
+ target_sample_rate=self.target_sample_rate,
174
+ hop_length=self.hop_length,
175
+ win_length=self.win_length,
176
+ )
177
 
 
 
178
  return mel
179
 
180
 
src/f5_tts/model/trainer.py CHANGED
@@ -1,25 +1,22 @@
1
  from __future__ import annotations
2
 
3
- import os
4
  import gc
5
- from tqdm import tqdm
6
- import wandb
7
 
8
  import torch
9
  import torchaudio
10
- from torch.optim import AdamW
11
- from torch.utils.data import DataLoader, Dataset, SequentialSampler
12
- from torch.optim.lr_scheduler import LinearLR, SequentialLR
13
-
14
  from accelerate import Accelerator
15
  from accelerate.utils import DistributedDataParallelKwargs
16
-
17
  from ema_pytorch import EMA
 
 
 
 
18
 
19
  from f5_tts.model import CFM
20
- from f5_tts.model.utils import exists, default
21
  from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
22
-
23
 
24
  # trainer
25
 
@@ -49,6 +46,7 @@ class Trainer:
49
  accelerate_kwargs: dict = dict(),
50
  ema_kwargs: dict = dict(),
51
  bnb_optimizer: bool = False,
 
52
  ):
53
  ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
54
 
@@ -110,6 +108,7 @@ class Trainer:
110
  self.max_samples = max_samples
111
  self.grad_accumulation_steps = grad_accumulation_steps
112
  self.max_grad_norm = max_grad_norm
 
113
 
114
  self.noise_scheduler = noise_scheduler
115
 
@@ -188,9 +187,10 @@ class Trainer:
188
 
189
  def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
190
  if self.log_samples:
191
- from f5_tts.infer.utils_infer import load_vocoder, nfe_step, cfg_strength, sway_sampling_coef
 
192
 
193
- vocoder = load_vocoder()
194
  target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
195
  log_samples_path = f"{self.checkpoint_path}/samples"
196
  os.makedirs(log_samples_path, exist_ok=True)
 
1
  from __future__ import annotations
2
 
 
3
  import gc
4
+ import os
 
5
 
6
  import torch
7
  import torchaudio
8
+ import wandb
 
 
 
9
  from accelerate import Accelerator
10
  from accelerate.utils import DistributedDataParallelKwargs
 
11
  from ema_pytorch import EMA
12
+ from torch.optim import AdamW
13
+ from torch.optim.lr_scheduler import LinearLR, SequentialLR
14
+ from torch.utils.data import DataLoader, Dataset, SequentialSampler
15
+ from tqdm import tqdm
16
 
17
  from f5_tts.model import CFM
 
18
  from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
19
+ from f5_tts.model.utils import default, exists
20
 
21
  # trainer
22
 
 
46
  accelerate_kwargs: dict = dict(),
47
  ema_kwargs: dict = dict(),
48
  bnb_optimizer: bool = False,
49
+ extract_backend: str = "vocos", # "vocos" | "bigvgan"
50
  ):
51
  ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
52
 
 
108
  self.max_samples = max_samples
109
  self.grad_accumulation_steps = grad_accumulation_steps
110
  self.max_grad_norm = max_grad_norm
111
+ self.vocoder_name = extract_backend
112
 
113
  self.noise_scheduler = noise_scheduler
114
 
 
187
 
188
  def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
189
  if self.log_samples:
190
+ from f5_tts.infer.utils_infer import (cfg_strength, load_vocoder,
191
+ nfe_step, sway_sampling_coef)
192
 
193
+ vocoder = load_vocoder(vocoder_name=self.vocoder_name)
194
  target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
195
  log_samples_path = f"{self.checkpoint_path}/samples"
196
  os.makedirs(log_samples_path, exist_ok=True)
src/f5_tts/train/train.py CHANGED
@@ -2,16 +2,18 @@
2
 
3
  from importlib.resources import files
4
 
5
- from f5_tts.model import CFM, UNetT, DiT, Trainer
6
- from f5_tts.model.utils import get_tokenizer
7
  from f5_tts.model.dataset import load_dataset
8
-
9
 
10
  # -------------------------- Dataset Settings --------------------------- #
11
 
12
  target_sample_rate = 24000
13
  n_mel_channels = 100
14
  hop_length = 256
 
 
 
15
 
16
  tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
17
  tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
@@ -56,9 +58,12 @@ def main():
56
  vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
57
 
58
  mel_spec_kwargs = dict(
59
- target_sample_rate=target_sample_rate,
60
- n_mel_channels=n_mel_channels,
61
  hop_length=hop_length,
 
 
 
 
62
  )
63
 
64
  model = CFM(
@@ -84,6 +89,7 @@ def main():
84
  wandb_resume_id=wandb_resume_id,
85
  last_per_steps=last_per_steps,
86
  log_samples=True,
 
87
  )
88
 
89
  train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
 
2
 
3
  from importlib.resources import files
4
 
5
+ from f5_tts.model import CFM, DiT, Trainer, UNetT
 
6
  from f5_tts.model.dataset import load_dataset
7
+ from f5_tts.model.utils import get_tokenizer
8
 
9
  # -------------------------- Dataset Settings --------------------------- #
10
 
11
  target_sample_rate = 24000
12
  n_mel_channels = 100
13
  hop_length = 256
14
+ win_length = 1024
15
+ n_fft = 1024
16
+ extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
17
 
18
  tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
19
  tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
 
58
  vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
59
 
60
  mel_spec_kwargs = dict(
61
+ n_fft=n_fft,
 
62
  hop_length=hop_length,
63
+ win_length=win_length,
64
+ n_mel_channels=n_mel_channels,
65
+ target_sample_rate=target_sample_rate,
66
+ extract_backend=extract_backend,
67
  )
68
 
69
  model = CFM(
 
89
  wandb_resume_id=wandb_resume_id,
90
  last_per_steps=last_per_steps,
91
  log_samples=True,
92
+ extract_backend=extract_backend,
93
  )
94
 
95
  train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
src/third_party/BigVGAN ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 7d2b454564a6c7d014227f635b7423881f14bdac