Spaces:
Configuration error
Configuration error
update Bigvgan vocoder and F5-bigvgan version, trained on Emilia ZH&EN, 1.25m updates
Browse files- .gitmodules +3 -0
- README.md +12 -1
- src/f5_tts/api.py +9 -14
- src/f5_tts/eval/eval_infer_batch.py +36 -30
- src/f5_tts/eval/utils_eval.py +11 -3
- src/f5_tts/infer/infer_cli.py +18 -11
- src/f5_tts/infer/speech_edit.py +28 -27
- src/f5_tts/infer/utils_infer.py +53 -29
- src/f5_tts/model/cfm.py +9 -13
- src/f5_tts/model/dataset.py +23 -5
- src/f5_tts/model/modules.py +142 -30
- src/f5_tts/model/trainer.py +12 -12
- src/f5_tts/train/train.py +11 -5
- src/third_party/BigVGAN +1 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "src/third_party/BigVGAN"]
|
2 |
+
path = src/third_party/BigVGAN
|
3 |
+
url = https://github.com/NVIDIA/BigVGAN.git
|
README.md
CHANGED
@@ -46,7 +46,18 @@ cd F5-TTS
|
|
46 |
pip install -e .
|
47 |
```
|
48 |
|
49 |
-
### 3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
```bash
|
51 |
# Build from Dockerfile
|
52 |
docker build -t f5tts:v1 .
|
|
|
46 |
pip install -e .
|
47 |
```
|
48 |
|
49 |
+
### 3. Init submodule( optional, if you want to change the vocoder from vocos to bigvgan)
|
50 |
+
|
51 |
+
```bash
|
52 |
+
git submodule update --init --recursive
|
53 |
+
```
|
54 |
+
After that, you need to change the `src/third_party/BigVGAN/bigvgan.py` by adding the following code at the beginning of the file.
|
55 |
+
```python
|
56 |
+
import sys
|
57 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
58 |
+
```
|
59 |
+
|
60 |
+
### 4. Docker usage
|
61 |
```bash
|
62 |
# Build from Dockerfile
|
63 |
docker build -t f5tts:v1 .
|
src/f5_tts/api.py
CHANGED
@@ -1,24 +1,18 @@
|
|
1 |
import random
|
2 |
import sys
|
3 |
-
import tqdm
|
4 |
from importlib.resources import files
|
5 |
|
6 |
import soundfile as sf
|
7 |
import torch
|
|
|
8 |
from cached_path import cached_path
|
9 |
|
|
|
|
|
|
|
|
|
10 |
from f5_tts.model import DiT, UNetT
|
11 |
from f5_tts.model.utils import seed_everything
|
12 |
-
from f5_tts.infer.utils_infer import (
|
13 |
-
load_vocoder,
|
14 |
-
load_model,
|
15 |
-
infer_process,
|
16 |
-
remove_silence_for_generated_wav,
|
17 |
-
save_spectrogram,
|
18 |
-
preprocess_ref_audio_text,
|
19 |
-
target_sample_rate,
|
20 |
-
hop_length,
|
21 |
-
)
|
22 |
|
23 |
|
24 |
class F5TTS:
|
@@ -29,6 +23,7 @@ class F5TTS:
|
|
29 |
vocab_file="",
|
30 |
ode_method="euler",
|
31 |
use_ema=True,
|
|
|
32 |
local_path=None,
|
33 |
device=None,
|
34 |
):
|
@@ -44,11 +39,11 @@ class F5TTS:
|
|
44 |
)
|
45 |
|
46 |
# Load models
|
47 |
-
self.load_vocoder_model(local_path)
|
48 |
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
|
49 |
|
50 |
-
def load_vocoder_model(self, local_path):
|
51 |
-
self.vocoder = load_vocoder(local_path is not None, local_path, self.device)
|
52 |
|
53 |
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
|
54 |
if model_type == "F5-TTS":
|
|
|
1 |
import random
|
2 |
import sys
|
|
|
3 |
from importlib.resources import files
|
4 |
|
5 |
import soundfile as sf
|
6 |
import torch
|
7 |
+
import tqdm
|
8 |
from cached_path import cached_path
|
9 |
|
10 |
+
from f5_tts.infer.utils_infer import (hop_length, infer_process, load_model,
|
11 |
+
load_vocoder, preprocess_ref_audio_text,
|
12 |
+
remove_silence_for_generated_wav,
|
13 |
+
save_spectrogram, target_sample_rate)
|
14 |
from f5_tts.model import DiT, UNetT
|
15 |
from f5_tts.model.utils import seed_everything
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
class F5TTS:
|
|
|
23 |
vocab_file="",
|
24 |
ode_method="euler",
|
25 |
use_ema=True,
|
26 |
+
vocoder_name="vocos",
|
27 |
local_path=None,
|
28 |
device=None,
|
29 |
):
|
|
|
39 |
)
|
40 |
|
41 |
# Load models
|
42 |
+
self.load_vocoder_model(vocoder_name, local_path)
|
43 |
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
|
44 |
|
45 |
+
def load_vocoder_model(self, vocoder_name, local_path):
|
46 |
+
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
|
47 |
|
48 |
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
|
49 |
if model_type == "F5-TTS":
|
src/f5_tts/eval/eval_infer_batch.py
CHANGED
@@ -1,26 +1,23 @@
|
|
1 |
-
import sys
|
2 |
import os
|
|
|
3 |
|
4 |
sys.path.append(os.getcwd())
|
5 |
|
6 |
-
import time
|
7 |
-
from tqdm import tqdm
|
8 |
import argparse
|
|
|
9 |
from importlib.resources import files
|
10 |
|
11 |
import torch
|
12 |
import torchaudio
|
13 |
from accelerate import Accelerator
|
14 |
-
from
|
15 |
|
16 |
-
from f5_tts.
|
|
|
|
|
|
|
|
|
17 |
from f5_tts.model.utils import get_tokenizer
|
18 |
-
from f5_tts.infer.utils_infer import load_checkpoint
|
19 |
-
from f5_tts.eval.utils_eval import (
|
20 |
-
get_seedtts_testset_metainfo,
|
21 |
-
get_librispeech_test_clean_metainfo,
|
22 |
-
get_inference_prompt,
|
23 |
-
)
|
24 |
|
25 |
accelerator = Accelerator()
|
26 |
device = f"cuda:{accelerator.process_index}"
|
@@ -31,8 +28,12 @@ device = f"cuda:{accelerator.process_index}"
|
|
31 |
target_sample_rate = 24000
|
32 |
n_mel_channels = 100
|
33 |
hop_length = 256
|
|
|
|
|
|
|
34 |
target_rms = 0.1
|
35 |
|
|
|
36 |
tokenizer = "pinyin"
|
37 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
38 |
|
@@ -123,14 +124,11 @@ def main():
|
|
123 |
|
124 |
# Vocoder model
|
125 |
local = False
|
126 |
-
if
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
vocos.eval()
|
132 |
-
else:
|
133 |
-
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
134 |
|
135 |
# Tokenizer
|
136 |
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
@@ -139,9 +137,12 @@ def main():
|
|
139 |
model = CFM(
|
140 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
141 |
mel_spec_kwargs=dict(
|
142 |
-
|
143 |
-
n_mel_channels=n_mel_channels,
|
144 |
hop_length=hop_length,
|
|
|
|
|
|
|
|
|
145 |
),
|
146 |
odeint_kwargs=dict(
|
147 |
method=ode_method,
|
@@ -149,7 +150,8 @@ def main():
|
|
149 |
vocab_char_map=vocab_char_map,
|
150 |
).to(device)
|
151 |
|
152 |
-
|
|
|
153 |
|
154 |
if not os.path.exists(output_dir) and accelerator.is_main_process:
|
155 |
os.makedirs(output_dir)
|
@@ -178,14 +180,18 @@ def main():
|
|
178 |
no_ref_audio=no_ref_audio,
|
179 |
seed=seed,
|
180 |
)
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
|
190 |
accelerator.wait_for_everyone()
|
191 |
if accelerator.is_main_process:
|
|
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
|
4 |
sys.path.append(os.getcwd())
|
5 |
|
|
|
|
|
6 |
import argparse
|
7 |
+
import time
|
8 |
from importlib.resources import files
|
9 |
|
10 |
import torch
|
11 |
import torchaudio
|
12 |
from accelerate import Accelerator
|
13 |
+
from tqdm import tqdm
|
14 |
|
15 |
+
from f5_tts.eval.utils_eval import (get_inference_prompt,
|
16 |
+
get_librispeech_test_clean_metainfo,
|
17 |
+
get_seedtts_testset_metainfo)
|
18 |
+
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
|
19 |
+
from f5_tts.model import CFM, DiT, UNetT
|
20 |
from f5_tts.model.utils import get_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
accelerator = Accelerator()
|
23 |
device = f"cuda:{accelerator.process_index}"
|
|
|
28 |
target_sample_rate = 24000
|
29 |
n_mel_channels = 100
|
30 |
hop_length = 256
|
31 |
+
win_length = 1024
|
32 |
+
n_fft = 1024
|
33 |
+
extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
|
34 |
target_rms = 0.1
|
35 |
|
36 |
+
|
37 |
tokenizer = "pinyin"
|
38 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
39 |
|
|
|
124 |
|
125 |
# Vocoder model
|
126 |
local = False
|
127 |
+
if extract_backend == "vocos":
|
128 |
+
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
129 |
+
elif extract_backend == "bigvgan":
|
130 |
+
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
131 |
+
vocoder = load_vocoder(vocoder_name=extract_backend, is_local=local, local_path=vocoder_local_path)
|
|
|
|
|
|
|
132 |
|
133 |
# Tokenizer
|
134 |
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
|
|
137 |
model = CFM(
|
138 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
139 |
mel_spec_kwargs=dict(
|
140 |
+
n_fft=n_fft,
|
|
|
141 |
hop_length=hop_length,
|
142 |
+
win_length=win_length,
|
143 |
+
n_mel_channels=n_mel_channels,
|
144 |
+
target_sample_rate=target_sample_rate,
|
145 |
+
extract_backend=extract_backend,
|
146 |
),
|
147 |
odeint_kwargs=dict(
|
148 |
method=ode_method,
|
|
|
150 |
vocab_char_map=vocab_char_map,
|
151 |
).to(device)
|
152 |
|
153 |
+
dtype = torch.float16 if extract_backend == "vocos" else torch.float32
|
154 |
+
model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
|
155 |
|
156 |
if not os.path.exists(output_dir) and accelerator.is_main_process:
|
157 |
os.makedirs(output_dir)
|
|
|
180 |
no_ref_audio=no_ref_audio,
|
181 |
seed=seed,
|
182 |
)
|
183 |
+
# Final result
|
184 |
+
for i, gen in enumerate(generated):
|
185 |
+
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
|
186 |
+
gen_mel_spec = gen.permute(0, 2, 1)
|
187 |
+
if extract_backend == "vocos":
|
188 |
+
generated_wave = vocoder.decode(gen_mel_spec.cpu())
|
189 |
+
elif extract_backend == "bigvgan":
|
190 |
+
generated_wave = vocoder(gen_mel_spec)
|
191 |
+
|
192 |
+
if ref_rms_list[i] < target_rms:
|
193 |
+
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
194 |
+
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
|
195 |
|
196 |
accelerator.wait_for_everyone()
|
197 |
if accelerator.is_main_process:
|
src/f5_tts/eval/utils_eval.py
CHANGED
@@ -2,15 +2,15 @@ import math
|
|
2 |
import os
|
3 |
import random
|
4 |
import string
|
5 |
-
from tqdm import tqdm
|
6 |
|
7 |
import torch
|
8 |
import torch.nn.functional as F
|
9 |
import torchaudio
|
|
|
10 |
|
|
|
11 |
from f5_tts.model.modules import MelSpec
|
12 |
from f5_tts.model.utils import convert_char_to_pinyin
|
13 |
-
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
|
14 |
|
15 |
|
16 |
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
@@ -74,8 +74,11 @@ def get_inference_prompt(
|
|
74 |
tokenizer="pinyin",
|
75 |
polyphone=True,
|
76 |
target_sample_rate=24000,
|
|
|
|
|
77 |
n_mel_channels=100,
|
78 |
hop_length=256,
|
|
|
79 |
target_rms=0.1,
|
80 |
use_truth_duration=False,
|
81 |
infer_batch_size=1,
|
@@ -94,7 +97,12 @@ def get_inference_prompt(
|
|
94 |
)
|
95 |
|
96 |
mel_spectrogram = MelSpec(
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
|
|
2 |
import os
|
3 |
import random
|
4 |
import string
|
|
|
5 |
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
import torchaudio
|
9 |
+
from tqdm import tqdm
|
10 |
|
11 |
+
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
|
12 |
from f5_tts.model.modules import MelSpec
|
13 |
from f5_tts.model.utils import convert_char_to_pinyin
|
|
|
14 |
|
15 |
|
16 |
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
|
|
74 |
tokenizer="pinyin",
|
75 |
polyphone=True,
|
76 |
target_sample_rate=24000,
|
77 |
+
n_fft=1024,
|
78 |
+
win_length=1024,
|
79 |
n_mel_channels=100,
|
80 |
hop_length=256,
|
81 |
+
extract_backend="bigvgan",
|
82 |
target_rms=0.1,
|
83 |
use_truth_duration=False,
|
84 |
infer_batch_size=1,
|
|
|
97 |
)
|
98 |
|
99 |
mel_spectrogram = MelSpec(
|
100 |
+
n_fft=n_fft,
|
101 |
+
hop_length=hop_length,
|
102 |
+
win_length=win_length,
|
103 |
+
n_mel_channels=n_mel_channels,
|
104 |
+
target_sample_rate=target_sample_rate,
|
105 |
+
extract_backend=extract_backend,
|
106 |
)
|
107 |
|
108 |
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
src/f5_tts/infer/infer_cli.py
CHANGED
@@ -2,23 +2,18 @@ import argparse
|
|
2 |
import codecs
|
3 |
import os
|
4 |
import re
|
5 |
-
from pathlib import Path
|
6 |
from importlib.resources import files
|
|
|
7 |
|
8 |
import numpy as np
|
9 |
import soundfile as sf
|
10 |
import tomli
|
11 |
from cached_path import cached_path
|
12 |
|
|
|
|
|
|
|
13 |
from f5_tts.model import DiT, UNetT
|
14 |
-
from f5_tts.infer.utils_infer import (
|
15 |
-
load_vocoder,
|
16 |
-
load_model,
|
17 |
-
preprocess_ref_audio_text,
|
18 |
-
infer_process,
|
19 |
-
remove_silence_for_generated_wav,
|
20 |
-
)
|
21 |
-
|
22 |
|
23 |
parser = argparse.ArgumentParser(
|
24 |
prog="python3 infer-cli.py",
|
@@ -70,6 +65,7 @@ parser.add_argument(
|
|
70 |
"--remove_silence",
|
71 |
help="Remove silence.",
|
72 |
)
|
|
|
73 |
parser.add_argument(
|
74 |
"--load_vocoder_from_local",
|
75 |
action="store_true",
|
@@ -111,9 +107,14 @@ remove_silence = args.remove_silence if args.remove_silence else config["remove_
|
|
111 |
speed = args.speed
|
112 |
wave_path = Path(output_dir) / "infer_cli_out.wav"
|
113 |
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
-
vocoder = load_vocoder(
|
|
|
|
|
117 |
|
118 |
|
119 |
# load models
|
@@ -136,6 +137,12 @@ elif model == "E2-TTS":
|
|
136 |
ckpt_step = 1200000
|
137 |
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
138 |
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
print(f"Using {model}...")
|
141 |
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
|
|
|
2 |
import codecs
|
3 |
import os
|
4 |
import re
|
|
|
5 |
from importlib.resources import files
|
6 |
+
from pathlib import Path
|
7 |
|
8 |
import numpy as np
|
9 |
import soundfile as sf
|
10 |
import tomli
|
11 |
from cached_path import cached_path
|
12 |
|
13 |
+
from f5_tts.infer.utils_infer import (infer_process, load_model, load_vocoder,
|
14 |
+
preprocess_ref_audio_text,
|
15 |
+
remove_silence_for_generated_wav)
|
16 |
from f5_tts.model import DiT, UNetT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
parser = argparse.ArgumentParser(
|
19 |
prog="python3 infer-cli.py",
|
|
|
65 |
"--remove_silence",
|
66 |
help="Remove silence.",
|
67 |
)
|
68 |
+
parser.add_argument("--vocoder_name", type=str, default="vocos", choices=["vocos", "bigvgan"], help="vocoder name")
|
69 |
parser.add_argument(
|
70 |
"--load_vocoder_from_local",
|
71 |
action="store_true",
|
|
|
107 |
speed = args.speed
|
108 |
wave_path = Path(output_dir) / "infer_cli_out.wav"
|
109 |
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
|
110 |
+
if args.vocoder_name == "vocos":
|
111 |
+
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
112 |
+
elif args.vocoder_name == "bigvgan":
|
113 |
+
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
114 |
|
115 |
+
vocoder = load_vocoder(
|
116 |
+
vocoder_name=args.vocoder_name, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path
|
117 |
+
)
|
118 |
|
119 |
|
120 |
# load models
|
|
|
137 |
ckpt_step = 1200000
|
138 |
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
139 |
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
140 |
+
elif args.vocoder_name == "bigvgan": # TODO: need to test
|
141 |
+
repo_name = "F5-TTS"
|
142 |
+
exp_name = "F5TTS_Base_bigvgan"
|
143 |
+
ckpt_step = 1250000
|
144 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
|
145 |
+
|
146 |
|
147 |
print(f"Using {model}...")
|
148 |
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
|
src/f5_tts/infer/speech_edit.py
CHANGED
@@ -3,17 +3,11 @@ import os
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
from f5_tts.model
|
10 |
-
|
11 |
-
convert_char_to_pinyin,
|
12 |
-
)
|
13 |
-
from f5_tts.infer.utils_infer import (
|
14 |
-
load_checkpoint,
|
15 |
-
save_spectrogram,
|
16 |
-
)
|
17 |
|
18 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
19 |
|
@@ -23,6 +17,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
|
|
23 |
target_sample_rate = 24000
|
24 |
n_mel_channels = 100
|
25 |
hop_length = 256
|
|
|
|
|
|
|
26 |
target_rms = 0.1
|
27 |
|
28 |
tokenizer = "pinyin"
|
@@ -89,15 +86,11 @@ if not os.path.exists(output_dir):
|
|
89 |
|
90 |
# Vocoder model
|
91 |
local = False
|
92 |
-
if
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
vocos.eval()
|
99 |
-
else:
|
100 |
-
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
101 |
|
102 |
# Tokenizer
|
103 |
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
@@ -106,9 +99,12 @@ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
|
106 |
model = CFM(
|
107 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
108 |
mel_spec_kwargs=dict(
|
109 |
-
|
110 |
-
n_mel_channels=n_mel_channels,
|
111 |
hop_length=hop_length,
|
|
|
|
|
|
|
|
|
112 |
),
|
113 |
odeint_kwargs=dict(
|
114 |
method=ode_method,
|
@@ -116,7 +112,8 @@ model = CFM(
|
|
116 |
vocab_char_map=vocab_char_map,
|
117 |
).to(device)
|
118 |
|
119 |
-
|
|
|
120 |
|
121 |
# Audio
|
122 |
audio, sr = torchaudio.load(audio_to_edit)
|
@@ -181,11 +178,15 @@ print(f"Generated mel: {generated.shape}")
|
|
181 |
# Final result
|
182 |
generated = generated.to(torch.float32)
|
183 |
generated = generated[:, ref_audio_len:, :]
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
186 |
if rms < target_rms:
|
187 |
generated_wave = generated_wave * rms / target_rms
|
188 |
|
189 |
-
save_spectrogram(
|
190 |
-
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
|
191 |
print(f"Generated wav: {generated_wave.shape}")
|
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
+
|
7 |
+
from f5_tts.infer.utils_infer import (load_checkpoint, load_vocoder,
|
8 |
+
save_spectrogram)
|
9 |
+
from f5_tts.model import CFM, DiT, UNetT
|
10 |
+
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
13 |
|
|
|
17 |
target_sample_rate = 24000
|
18 |
n_mel_channels = 100
|
19 |
hop_length = 256
|
20 |
+
win_length = 1024
|
21 |
+
n_fft = 1024
|
22 |
+
extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
|
23 |
target_rms = 0.1
|
24 |
|
25 |
tokenizer = "pinyin"
|
|
|
86 |
|
87 |
# Vocoder model
|
88 |
local = False
|
89 |
+
if extract_backend == "vocos":
|
90 |
+
vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
91 |
+
elif extract_backend == "bigvgan":
|
92 |
+
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
93 |
+
vocoder = load_vocoder(vocoder_name=extract_backend, is_local=local, local_path=vocoder_local_path)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Tokenizer
|
96 |
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
|
|
99 |
model = CFM(
|
100 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
101 |
mel_spec_kwargs=dict(
|
102 |
+
n_fft=n_fft,
|
|
|
103 |
hop_length=hop_length,
|
104 |
+
win_length=win_length,
|
105 |
+
n_mel_channels=n_mel_channels,
|
106 |
+
target_sample_rate=target_sample_rate,
|
107 |
+
extract_backend=extract_backend,
|
108 |
),
|
109 |
odeint_kwargs=dict(
|
110 |
method=ode_method,
|
|
|
112 |
vocab_char_map=vocab_char_map,
|
113 |
).to(device)
|
114 |
|
115 |
+
dtype = torch.float16 if extract_backend == "vocos" else torch.float32
|
116 |
+
model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
|
117 |
|
118 |
# Audio
|
119 |
audio, sr = torchaudio.load(audio_to_edit)
|
|
|
178 |
# Final result
|
179 |
generated = generated.to(torch.float32)
|
180 |
generated = generated[:, ref_audio_len:, :]
|
181 |
+
gen_mel_spec = generated.permute(0, 2, 1)
|
182 |
+
if extract_backend == "vocos":
|
183 |
+
generated_wave = vocoder.decode(gen_mel_spec.cpu())
|
184 |
+
elif extract_backend == "bigvgan":
|
185 |
+
generated_wave = vocoder(gen_mel_spec)
|
186 |
+
|
187 |
if rms < target_rms:
|
188 |
generated_wave = generated_wave * rms / target_rms
|
189 |
|
190 |
+
save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
|
191 |
+
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
|
192 |
print(f"Generated wav: {generated_wave.shape}")
|
src/f5_tts/infer/utils_infer.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
# A unified script for inference process
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
|
|
|
|
3 |
|
|
|
|
|
4 |
import hashlib
|
5 |
import re
|
6 |
import tempfile
|
@@ -34,6 +38,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
|
|
34 |
target_sample_rate = 24000
|
35 |
n_mel_channels = 100
|
36 |
hop_length = 256
|
|
|
|
|
|
|
37 |
target_rms = 0.1
|
38 |
cross_fade_duration = 0.15
|
39 |
ode_method = "euler"
|
@@ -80,17 +87,28 @@ def chunk_text(text, max_chars=135):
|
|
80 |
|
81 |
|
82 |
# load vocoder
|
83 |
-
def load_vocoder(is_local=False, local_path="", device=device):
|
84 |
-
if
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
# load asr pipeline
|
@@ -111,9 +129,8 @@ def initialize_asr_pipeline(device=device):
|
|
111 |
# load model checkpoint for inference
|
112 |
|
113 |
|
114 |
-
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
115 |
-
|
116 |
-
model = model.half()
|
117 |
|
118 |
ckpt_type = ckpt_path.split(".")[-1]
|
119 |
if ckpt_type == "safetensors":
|
@@ -156,9 +173,12 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
|
|
156 |
model = CFM(
|
157 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
158 |
mel_spec_kwargs=dict(
|
159 |
-
|
160 |
-
n_mel_channels=n_mel_channels,
|
161 |
hop_length=hop_length,
|
|
|
|
|
|
|
|
|
162 |
),
|
163 |
odeint_kwargs=dict(
|
164 |
method=ode_method,
|
@@ -166,7 +186,8 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
|
|
166 |
vocab_char_map=vocab_char_map,
|
167 |
).to(device)
|
168 |
|
169 |
-
|
|
|
170 |
|
171 |
return model
|
172 |
|
@@ -359,18 +380,21 @@ def infer_batch_process(
|
|
359 |
sway_sampling_coef=sway_sampling_coef,
|
360 |
)
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
374 |
|
375 |
# Combine all generated waves with cross-fading
|
376 |
if cross_fade_duration <= 0:
|
|
|
1 |
# A unified script for inference process
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
|
6 |
+
sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/")
|
7 |
+
from third_party.BigVGAN import bigvgan
|
8 |
import hashlib
|
9 |
import re
|
10 |
import tempfile
|
|
|
38 |
target_sample_rate = 24000
|
39 |
n_mel_channels = 100
|
40 |
hop_length = 256
|
41 |
+
win_length = 1024
|
42 |
+
n_fft = 1024
|
43 |
+
extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
|
44 |
target_rms = 0.1
|
45 |
cross_fade_duration = 0.15
|
46 |
ode_method = "euler"
|
|
|
87 |
|
88 |
|
89 |
# load vocoder
|
90 |
+
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device):
|
91 |
+
if vocoder_name == "vocos":
|
92 |
+
if is_local:
|
93 |
+
print(f"Load vocos from local path {local_path}")
|
94 |
+
vocoder = Vocos.from_hparams(f"{local_path}/config.yaml")
|
95 |
+
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu")
|
96 |
+
vocoder.load_state_dict(state_dict)
|
97 |
+
vocoder.eval()
|
98 |
+
vocoder = vocoder.eval().to(device)
|
99 |
+
else:
|
100 |
+
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
101 |
+
vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
102 |
+
elif vocoder_name == "bigvgan":
|
103 |
+
if is_local:
|
104 |
+
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
|
105 |
+
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
106 |
+
else:
|
107 |
+
vocoder = bigvgan.BigVGAN.from_pretrained("nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False)
|
108 |
+
|
109 |
+
vocoder.remove_weight_norm()
|
110 |
+
vocoder = vocoder.eval().to(device)
|
111 |
+
return vocoder
|
112 |
|
113 |
|
114 |
# load asr pipeline
|
|
|
129 |
# load model checkpoint for inference
|
130 |
|
131 |
|
132 |
+
def load_checkpoint(model, ckpt_path, device, dtype, use_ema=True):
|
133 |
+
model = model.to(dtype)
|
|
|
134 |
|
135 |
ckpt_type = ckpt_path.split(".")[-1]
|
136 |
if ckpt_type == "safetensors":
|
|
|
173 |
model = CFM(
|
174 |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
175 |
mel_spec_kwargs=dict(
|
176 |
+
n_fft=n_fft,
|
|
|
177 |
hop_length=hop_length,
|
178 |
+
win_length=win_length,
|
179 |
+
n_mel_channels=n_mel_channels,
|
180 |
+
target_sample_rate=target_sample_rate,
|
181 |
+
extract_backend=extract_backend,
|
182 |
),
|
183 |
odeint_kwargs=dict(
|
184 |
method=ode_method,
|
|
|
186 |
vocab_char_map=vocab_char_map,
|
187 |
).to(device)
|
188 |
|
189 |
+
dtype = torch.float16 if extract_backend == "vocos" else torch.float32
|
190 |
+
model = load_checkpoint(model, ckpt_path, device, dtype, use_ema=use_ema)
|
191 |
|
192 |
return model
|
193 |
|
|
|
380 |
sway_sampling_coef=sway_sampling_coef,
|
381 |
)
|
382 |
|
383 |
+
generated = generated.to(torch.float32)
|
384 |
+
generated = generated[:, ref_audio_len:, :]
|
385 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
386 |
+
if extract_backend == "vocos":
|
387 |
+
generated_wave = vocoder.decode(generated_mel_spec.cpu())
|
388 |
+
elif extract_backend == "bigvgan":
|
389 |
+
generated_wave = vocoder(generated_mel_spec)
|
390 |
+
if rms < target_rms:
|
391 |
+
generated_wave = generated_wave * rms / target_rms
|
392 |
+
|
393 |
+
# wav -> numpy
|
394 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
395 |
+
|
396 |
+
generated_waves.append(generated_wave)
|
397 |
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
398 |
|
399 |
# Combine all generated waves with cross-fading
|
400 |
if cross_fade_duration <= 0:
|
src/f5_tts/model/cfm.py
CHANGED
@@ -8,25 +8,19 @@ d - dimension
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
11 |
-
|
12 |
from random import random
|
|
|
13 |
|
14 |
import torch
|
15 |
-
from torch import nn
|
16 |
import torch.nn.functional as F
|
|
|
17 |
from torch.nn.utils.rnn import pad_sequence
|
18 |
-
|
19 |
from torchdiffeq import odeint
|
20 |
|
21 |
from f5_tts.model.modules import MelSpec
|
22 |
-
from f5_tts.model.utils import (
|
23 |
-
|
24 |
-
exists,
|
25 |
-
list_str_to_idx,
|
26 |
-
list_str_to_tensor,
|
27 |
-
lens_to_mask,
|
28 |
-
mask_from_frac_lengths,
|
29 |
-
)
|
30 |
|
31 |
|
32 |
class CFM(nn.Module):
|
@@ -99,8 +93,10 @@ class CFM(nn.Module):
|
|
99 |
):
|
100 |
self.eval()
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
105 |
# raw wave
|
106 |
|
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
11 |
+
|
12 |
from random import random
|
13 |
+
from typing import Callable
|
14 |
|
15 |
import torch
|
|
|
16 |
import torch.nn.functional as F
|
17 |
+
from torch import nn
|
18 |
from torch.nn.utils.rnn import pad_sequence
|
|
|
19 |
from torchdiffeq import odeint
|
20 |
|
21 |
from f5_tts.model.modules import MelSpec
|
22 |
+
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
|
23 |
+
list_str_to_tensor, mask_from_frac_lengths)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
class CFM(nn.Module):
|
|
|
93 |
):
|
94 |
self.eval()
|
95 |
|
96 |
+
assert next(self.parameters()).dtype == torch.float32 or next(self.parameters()).dtype == torch.float16, print(
|
97 |
+
"Only support fp16 and fp32 inference currently"
|
98 |
+
)
|
99 |
+
cond = cond.to(next(self.parameters()).dtype)
|
100 |
|
101 |
# raw wave
|
102 |
|
src/f5_tts/model/dataset.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import json
|
2 |
import random
|
3 |
from importlib.resources import files
|
4 |
-
from tqdm import tqdm
|
5 |
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
import torchaudio
|
|
|
|
|
9 |
from torch import nn
|
10 |
from torch.utils.data import Dataset, Sampler
|
11 |
-
from
|
12 |
-
from datasets import Dataset as Dataset_
|
13 |
|
14 |
from f5_tts.model.modules import MelSpec
|
15 |
from f5_tts.model.utils import default
|
@@ -22,12 +22,21 @@ class HFDataset(Dataset):
|
|
22 |
target_sample_rate=24_000,
|
23 |
n_mel_channels=100,
|
24 |
hop_length=256,
|
|
|
|
|
|
|
25 |
):
|
26 |
self.data = hf_dataset
|
27 |
self.target_sample_rate = target_sample_rate
|
28 |
self.hop_length = hop_length
|
|
|
29 |
self.mel_spectrogram = MelSpec(
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
def get_frame_len(self, index):
|
@@ -79,6 +88,9 @@ class CustomDataset(Dataset):
|
|
79 |
target_sample_rate=24_000,
|
80 |
hop_length=256,
|
81 |
n_mel_channels=100,
|
|
|
|
|
|
|
82 |
preprocessed_mel=False,
|
83 |
mel_spec_module: nn.Module | None = None,
|
84 |
):
|
@@ -86,15 +98,21 @@ class CustomDataset(Dataset):
|
|
86 |
self.durations = durations
|
87 |
self.target_sample_rate = target_sample_rate
|
88 |
self.hop_length = hop_length
|
|
|
|
|
|
|
89 |
self.preprocessed_mel = preprocessed_mel
|
90 |
|
91 |
if not preprocessed_mel:
|
92 |
self.mel_spectrogram = default(
|
93 |
mel_spec_module,
|
94 |
MelSpec(
|
95 |
-
|
96 |
hop_length=hop_length,
|
|
|
97 |
n_mel_channels=n_mel_channels,
|
|
|
|
|
98 |
),
|
99 |
)
|
100 |
|
|
|
1 |
import json
|
2 |
import random
|
3 |
from importlib.resources import files
|
|
|
4 |
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
import torchaudio
|
8 |
+
from datasets import Dataset as Dataset_
|
9 |
+
from datasets import load_from_disk
|
10 |
from torch import nn
|
11 |
from torch.utils.data import Dataset, Sampler
|
12 |
+
from tqdm import tqdm
|
|
|
13 |
|
14 |
from f5_tts.model.modules import MelSpec
|
15 |
from f5_tts.model.utils import default
|
|
|
22 |
target_sample_rate=24_000,
|
23 |
n_mel_channels=100,
|
24 |
hop_length=256,
|
25 |
+
n_fft=1024,
|
26 |
+
win_length=1024,
|
27 |
+
extract_backend="vocos",
|
28 |
):
|
29 |
self.data = hf_dataset
|
30 |
self.target_sample_rate = target_sample_rate
|
31 |
self.hop_length = hop_length
|
32 |
+
|
33 |
self.mel_spectrogram = MelSpec(
|
34 |
+
n_fft=n_fft,
|
35 |
+
hop_length=hop_length,
|
36 |
+
win_length=win_length,
|
37 |
+
n_mel_channels=n_mel_channels,
|
38 |
+
target_sample_rate=target_sample_rate,
|
39 |
+
extract_backend=extract_backend,
|
40 |
)
|
41 |
|
42 |
def get_frame_len(self, index):
|
|
|
88 |
target_sample_rate=24_000,
|
89 |
hop_length=256,
|
90 |
n_mel_channels=100,
|
91 |
+
n_fft=1024,
|
92 |
+
win_length=1024,
|
93 |
+
extract_backend="vocos",
|
94 |
preprocessed_mel=False,
|
95 |
mel_spec_module: nn.Module | None = None,
|
96 |
):
|
|
|
98 |
self.durations = durations
|
99 |
self.target_sample_rate = target_sample_rate
|
100 |
self.hop_length = hop_length
|
101 |
+
self.n_fft = n_fft
|
102 |
+
self.win_length = win_length
|
103 |
+
self.extract_backend = extract_backend
|
104 |
self.preprocessed_mel = preprocessed_mel
|
105 |
|
106 |
if not preprocessed_mel:
|
107 |
self.mel_spectrogram = default(
|
108 |
mel_spec_module,
|
109 |
MelSpec(
|
110 |
+
n_fft=n_fft,
|
111 |
hop_length=hop_length,
|
112 |
+
win_length=win_length,
|
113 |
n_mel_channels=n_mel_channels,
|
114 |
+
target_sample_rate=target_sample_rate,
|
115 |
+
extract_backend=extract_backend,
|
116 |
),
|
117 |
)
|
118 |
|
src/f5_tts/model/modules.py
CHANGED
@@ -8,61 +8,173 @@ d - dimension
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
11 |
-
|
12 |
import math
|
|
|
13 |
|
14 |
import torch
|
15 |
-
from torch import nn
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
-
|
|
|
19 |
from x_transformers.x_transformers import apply_rotary_pos_emb
|
20 |
|
21 |
-
|
22 |
# raw wav to mel spec
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class MelSpec(nn.Module):
|
26 |
def __init__(
|
27 |
self,
|
28 |
-
|
29 |
hop_length=256,
|
30 |
win_length=1024,
|
31 |
n_mel_channels=100,
|
32 |
target_sample_rate=24_000,
|
33 |
-
|
34 |
-
power=1,
|
35 |
-
norm=None,
|
36 |
-
center=True,
|
37 |
):
|
38 |
super().__init__()
|
39 |
-
|
40 |
-
|
41 |
-
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
42 |
-
sample_rate=target_sample_rate,
|
43 |
-
n_fft=filter_length,
|
44 |
-
win_length=win_length,
|
45 |
-
hop_length=hop_length,
|
46 |
-
n_mels=n_mel_channels,
|
47 |
-
power=power,
|
48 |
-
center=center,
|
49 |
-
normalized=normalize,
|
50 |
-
norm=norm,
|
51 |
)
|
52 |
|
53 |
-
self.
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
mel = self.mel_stft(inp)
|
65 |
-
mel = mel.clamp(min=1e-5).log()
|
66 |
return mel
|
67 |
|
68 |
|
|
|
8 |
"""
|
9 |
|
10 |
from __future__ import annotations
|
11 |
+
|
12 |
import math
|
13 |
+
from typing import Optional
|
14 |
|
15 |
import torch
|
|
|
16 |
import torch.nn.functional as F
|
17 |
import torchaudio
|
18 |
+
from librosa.filters import mel as librosa_mel_fn
|
19 |
+
from torch import nn
|
20 |
from x_transformers.x_transformers import apply_rotary_pos_emb
|
21 |
|
|
|
22 |
# raw wav to mel spec
|
23 |
|
24 |
|
25 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
26 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
27 |
+
|
28 |
+
|
29 |
+
def dynamic_range_decompression_torch(x, C=1):
|
30 |
+
return torch.exp(x) / C
|
31 |
+
|
32 |
+
|
33 |
+
def spectral_normalize_torch(magnitudes):
|
34 |
+
return dynamic_range_compression_torch(magnitudes)
|
35 |
+
|
36 |
+
|
37 |
+
mel_basis_cache = {}
|
38 |
+
hann_window_cache = {}
|
39 |
+
|
40 |
+
|
41 |
+
# BigVGAN extract mel spectrogram
|
42 |
+
def mel_spectrogram(
|
43 |
+
y: torch.Tensor,
|
44 |
+
n_fft: int,
|
45 |
+
num_mels: int,
|
46 |
+
sampling_rate: int,
|
47 |
+
hop_size: int,
|
48 |
+
win_size: int,
|
49 |
+
fmin: int,
|
50 |
+
fmax: int = None,
|
51 |
+
center: bool = False,
|
52 |
+
) -> torch.Tensor:
|
53 |
+
"""Copy from https://github.com/NVIDIA/BigVGAN/tree/main"""
|
54 |
+
device = y.device
|
55 |
+
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
|
56 |
+
|
57 |
+
if key not in mel_basis_cache:
|
58 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
59 |
+
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
|
60 |
+
hann_window_cache[key] = torch.hann_window(win_size).to(device)
|
61 |
+
|
62 |
+
mel_basis = mel_basis_cache[key]
|
63 |
+
hann_window = hann_window_cache[key]
|
64 |
+
|
65 |
+
padding = (n_fft - hop_size) // 2
|
66 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
|
67 |
+
|
68 |
+
spec = torch.stft(
|
69 |
+
y,
|
70 |
+
n_fft,
|
71 |
+
hop_length=hop_size,
|
72 |
+
win_length=win_size,
|
73 |
+
window=hann_window,
|
74 |
+
center=center,
|
75 |
+
pad_mode="reflect",
|
76 |
+
normalized=False,
|
77 |
+
onesided=True,
|
78 |
+
return_complex=True,
|
79 |
+
)
|
80 |
+
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
81 |
+
|
82 |
+
mel_spec = torch.matmul(mel_basis, spec)
|
83 |
+
mel_spec = spectral_normalize_torch(mel_spec)
|
84 |
+
|
85 |
+
return mel_spec
|
86 |
+
|
87 |
+
|
88 |
+
def get_bigvgan_mel_spectrogram(
|
89 |
+
waveform,
|
90 |
+
n_fft=1024,
|
91 |
+
n_mel_channels=100,
|
92 |
+
target_sample_rate=24000,
|
93 |
+
hop_length=256,
|
94 |
+
win_length=1024,
|
95 |
+
):
|
96 |
+
return mel_spectrogram(
|
97 |
+
waveform,
|
98 |
+
n_fft, # 1024
|
99 |
+
n_mel_channels, # 100
|
100 |
+
target_sample_rate, # 24000
|
101 |
+
hop_length, # 256
|
102 |
+
win_length, # 1024
|
103 |
+
fmin=0, # 0
|
104 |
+
fmax=None, # null
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
def get_vocos_mel_spectrogram(
|
109 |
+
waveform,
|
110 |
+
n_fft=1024,
|
111 |
+
n_mel_channels=100,
|
112 |
+
target_sample_rate=24000,
|
113 |
+
hop_length=256,
|
114 |
+
win_length=1024,
|
115 |
+
):
|
116 |
+
mel_stft = torchaudio.transforms.MelSpectrogram(
|
117 |
+
sample_rate=target_sample_rate,
|
118 |
+
n_fft=n_fft,
|
119 |
+
win_length=win_length,
|
120 |
+
hop_length=hop_length,
|
121 |
+
n_mels=n_mel_channels,
|
122 |
+
power=1,
|
123 |
+
center=True,
|
124 |
+
normalized=False,
|
125 |
+
norm=None,
|
126 |
+
)
|
127 |
+
if len(waveform.shape) == 3:
|
128 |
+
waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
|
129 |
+
|
130 |
+
assert len(waveform.shape) == 2
|
131 |
+
|
132 |
+
mel = mel_stft(waveform)
|
133 |
+
mel = mel.clamp(min=1e-5).log()
|
134 |
+
return mel
|
135 |
+
|
136 |
+
|
137 |
class MelSpec(nn.Module):
|
138 |
def __init__(
|
139 |
self,
|
140 |
+
n_fft=1024,
|
141 |
hop_length=256,
|
142 |
win_length=1024,
|
143 |
n_mel_channels=100,
|
144 |
target_sample_rate=24_000,
|
145 |
+
extract_backend="vocos",
|
|
|
|
|
|
|
146 |
):
|
147 |
super().__init__()
|
148 |
+
assert extract_backend in ["vocos", "bigvgan"], print(
|
149 |
+
"We only support two extract mel backend: vocos or bigvgan"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
)
|
151 |
|
152 |
+
self.n_fft = n_fft
|
153 |
+
self.hop_length = hop_length
|
154 |
+
self.win_length = win_length
|
155 |
+
self.n_mel_channels = n_mel_channels
|
156 |
+
self.target_sample_rate = target_sample_rate
|
157 |
|
158 |
+
if extract_backend == "vocos":
|
159 |
+
self.extractor = get_vocos_mel_spectrogram
|
160 |
+
elif extract_backend == "bigvgan":
|
161 |
+
self.extractor = get_bigvgan_mel_spectrogram
|
162 |
|
163 |
+
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
164 |
|
165 |
+
def forward(self, wav):
|
166 |
+
if self.dummy.device != wav.device:
|
167 |
+
self.to(wav.device)
|
168 |
+
|
169 |
+
mel = self.extractor(
|
170 |
+
waveform=wav,
|
171 |
+
n_fft=self.n_fft,
|
172 |
+
n_mel_channels=self.n_mel_channels,
|
173 |
+
target_sample_rate=self.target_sample_rate,
|
174 |
+
hop_length=self.hop_length,
|
175 |
+
win_length=self.win_length,
|
176 |
+
)
|
177 |
|
|
|
|
|
178 |
return mel
|
179 |
|
180 |
|
src/f5_tts/model/trainer.py
CHANGED
@@ -1,25 +1,22 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
-
import os
|
4 |
import gc
|
5 |
-
|
6 |
-
import wandb
|
7 |
|
8 |
import torch
|
9 |
import torchaudio
|
10 |
-
|
11 |
-
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
12 |
-
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
13 |
-
|
14 |
from accelerate import Accelerator
|
15 |
from accelerate.utils import DistributedDataParallelKwargs
|
16 |
-
|
17 |
from ema_pytorch import EMA
|
|
|
|
|
|
|
|
|
18 |
|
19 |
from f5_tts.model import CFM
|
20 |
-
from f5_tts.model.utils import exists, default
|
21 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
22 |
-
|
23 |
|
24 |
# trainer
|
25 |
|
@@ -49,6 +46,7 @@ class Trainer:
|
|
49 |
accelerate_kwargs: dict = dict(),
|
50 |
ema_kwargs: dict = dict(),
|
51 |
bnb_optimizer: bool = False,
|
|
|
52 |
):
|
53 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
54 |
|
@@ -110,6 +108,7 @@ class Trainer:
|
|
110 |
self.max_samples = max_samples
|
111 |
self.grad_accumulation_steps = grad_accumulation_steps
|
112 |
self.max_grad_norm = max_grad_norm
|
|
|
113 |
|
114 |
self.noise_scheduler = noise_scheduler
|
115 |
|
@@ -188,9 +187,10 @@ class Trainer:
|
|
188 |
|
189 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
190 |
if self.log_samples:
|
191 |
-
from f5_tts.infer.utils_infer import
|
|
|
192 |
|
193 |
-
vocoder = load_vocoder()
|
194 |
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
|
195 |
log_samples_path = f"{self.checkpoint_path}/samples"
|
196 |
os.makedirs(log_samples_path, exist_ok=True)
|
|
|
1 |
from __future__ import annotations
|
2 |
|
|
|
3 |
import gc
|
4 |
+
import os
|
|
|
5 |
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
+
import wandb
|
|
|
|
|
|
|
9 |
from accelerate import Accelerator
|
10 |
from accelerate.utils import DistributedDataParallelKwargs
|
|
|
11 |
from ema_pytorch import EMA
|
12 |
+
from torch.optim import AdamW
|
13 |
+
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
14 |
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
15 |
+
from tqdm import tqdm
|
16 |
|
17 |
from f5_tts.model import CFM
|
|
|
18 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
19 |
+
from f5_tts.model.utils import default, exists
|
20 |
|
21 |
# trainer
|
22 |
|
|
|
46 |
accelerate_kwargs: dict = dict(),
|
47 |
ema_kwargs: dict = dict(),
|
48 |
bnb_optimizer: bool = False,
|
49 |
+
extract_backend: str = "vocos", # "vocos" | "bigvgan"
|
50 |
):
|
51 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
52 |
|
|
|
108 |
self.max_samples = max_samples
|
109 |
self.grad_accumulation_steps = grad_accumulation_steps
|
110 |
self.max_grad_norm = max_grad_norm
|
111 |
+
self.vocoder_name = extract_backend
|
112 |
|
113 |
self.noise_scheduler = noise_scheduler
|
114 |
|
|
|
187 |
|
188 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
189 |
if self.log_samples:
|
190 |
+
from f5_tts.infer.utils_infer import (cfg_strength, load_vocoder,
|
191 |
+
nfe_step, sway_sampling_coef)
|
192 |
|
193 |
+
vocoder = load_vocoder(vocoder_name=self.vocoder_name)
|
194 |
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
|
195 |
log_samples_path = f"{self.checkpoint_path}/samples"
|
196 |
os.makedirs(log_samples_path, exist_ok=True)
|
src/f5_tts/train/train.py
CHANGED
@@ -2,16 +2,18 @@
|
|
2 |
|
3 |
from importlib.resources import files
|
4 |
|
5 |
-
from f5_tts.model import CFM,
|
6 |
-
from f5_tts.model.utils import get_tokenizer
|
7 |
from f5_tts.model.dataset import load_dataset
|
8 |
-
|
9 |
|
10 |
# -------------------------- Dataset Settings --------------------------- #
|
11 |
|
12 |
target_sample_rate = 24000
|
13 |
n_mel_channels = 100
|
14 |
hop_length = 256
|
|
|
|
|
|
|
15 |
|
16 |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
17 |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
@@ -56,9 +58,12 @@ def main():
|
|
56 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
57 |
|
58 |
mel_spec_kwargs = dict(
|
59 |
-
|
60 |
-
n_mel_channels=n_mel_channels,
|
61 |
hop_length=hop_length,
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
model = CFM(
|
@@ -84,6 +89,7 @@ def main():
|
|
84 |
wandb_resume_id=wandb_resume_id,
|
85 |
last_per_steps=last_per_steps,
|
86 |
log_samples=True,
|
|
|
87 |
)
|
88 |
|
89 |
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
|
2 |
|
3 |
from importlib.resources import files
|
4 |
|
5 |
+
from f5_tts.model import CFM, DiT, Trainer, UNetT
|
|
|
6 |
from f5_tts.model.dataset import load_dataset
|
7 |
+
from f5_tts.model.utils import get_tokenizer
|
8 |
|
9 |
# -------------------------- Dataset Settings --------------------------- #
|
10 |
|
11 |
target_sample_rate = 24000
|
12 |
n_mel_channels = 100
|
13 |
hop_length = 256
|
14 |
+
win_length = 1024
|
15 |
+
n_fft = 1024
|
16 |
+
extract_backend = "bigvgan" # 'vocos' or 'bigvgan'
|
17 |
|
18 |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
|
19 |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
|
|
58 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
59 |
|
60 |
mel_spec_kwargs = dict(
|
61 |
+
n_fft=n_fft,
|
|
|
62 |
hop_length=hop_length,
|
63 |
+
win_length=win_length,
|
64 |
+
n_mel_channels=n_mel_channels,
|
65 |
+
target_sample_rate=target_sample_rate,
|
66 |
+
extract_backend=extract_backend,
|
67 |
)
|
68 |
|
69 |
model = CFM(
|
|
|
89 |
wandb_resume_id=wandb_resume_id,
|
90 |
last_per_steps=last_per_steps,
|
91 |
log_samples=True,
|
92 |
+
extract_backend=extract_backend,
|
93 |
)
|
94 |
|
95 |
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
src/third_party/BigVGAN
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 7d2b454564a6c7d014227f635b7423881f14bdac
|