Spaces:
Configuration error
Configuration error
finish eval dependencies; update infer_gradio with chat feature
Browse files- README.md +5 -48
- pyproject.toml +1 -0
- src/f5_tts/eval/README.md +45 -0
- src/f5_tts/eval/eval_infer_batch.py +9 -9
- src/f5_tts/eval/eval_infer_batch.sh +6 -6
- src/f5_tts/eval/eval_librispeech_test_clean.py +6 -2
- src/f5_tts/eval/eval_seedtts_testset.py +7 -3
- src/f5_tts/infer/infer_gradio.py +137 -119
- src/f5_tts/infer/utils_infer.py +30 -15
- src/f5_tts/model/utils.py +3 -2
README.md
CHANGED
@@ -81,6 +81,9 @@ python scripts/prepare_emilia.py
|
|
81 |
|
82 |
# Prepare the Wenetspeech4TTS dataset
|
83 |
python scripts/prepare_wenetspeech4tts.py
|
|
|
|
|
|
|
84 |
```
|
85 |
|
86 |
## Training & Finetuning
|
@@ -175,6 +178,7 @@ python inference-cli.py \
|
|
175 |
--gen_text "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道,我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"
|
176 |
|
177 |
# Multi voice
|
|
|
178 |
python inference-cli.py -c samples/story.toml
|
179 |
```
|
180 |
|
@@ -211,54 +215,7 @@ To test speech editing capabilities, use the following command.
|
|
211 |
python f5_tts/speech_edit.py
|
212 |
```
|
213 |
|
214 |
-
## Evaluation
|
215 |
-
|
216 |
-
### Prepare Test Datasets
|
217 |
-
|
218 |
-
1. Seed-TTS test set: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
|
219 |
-
2. LibriSpeech test-clean: Download from [OpenSLR](http://www.openslr.org/12/).
|
220 |
-
3. Unzip the downloaded datasets and place them in the data/ directory.
|
221 |
-
4. Update the path for the test-clean data in `scripts/eval_infer_batch.py`
|
222 |
-
5. Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo
|
223 |
-
|
224 |
-
### Batch Inference for Test Set
|
225 |
-
|
226 |
-
To run batch inference for evaluations, execute the following commands:
|
227 |
-
|
228 |
-
```bash
|
229 |
-
# switch to the main directory
|
230 |
-
cd f5_tts
|
231 |
-
|
232 |
-
# batch inference for evaluations
|
233 |
-
accelerate config # if not set before
|
234 |
-
bash scripts/eval_infer_batch.sh
|
235 |
-
```
|
236 |
-
|
237 |
-
### Download Evaluation Model Checkpoints
|
238 |
-
|
239 |
-
1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
|
240 |
-
2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
|
241 |
-
3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
|
242 |
-
|
243 |
-
### Objective Evaluation
|
244 |
-
|
245 |
-
Install packages for evaluation:
|
246 |
-
|
247 |
-
```bash
|
248 |
-
pip install -e .[eval]
|
249 |
-
```
|
250 |
-
|
251 |
-
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
|
252 |
-
```bash
|
253 |
-
# switch to the main directory
|
254 |
-
cd f5_tts
|
255 |
-
|
256 |
-
# Evaluation for Seed-TTS test set
|
257 |
-
python scripts/eval_seedtts_testset.py
|
258 |
-
|
259 |
-
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
|
260 |
-
python scripts/eval_librispeech_test_clean.py
|
261 |
-
```
|
262 |
|
263 |
## Acknowledgements
|
264 |
|
|
|
81 |
|
82 |
# Prepare the Wenetspeech4TTS dataset
|
83 |
python scripts/prepare_wenetspeech4tts.py
|
84 |
+
|
85 |
+
# https://github.com/SWivid/F5-TTS/discussions/57#discussioncomment-10959029
|
86 |
+
python scripts/prepare_csv_wavs.py
|
87 |
```
|
88 |
|
89 |
## Training & Finetuning
|
|
|
178 |
--gen_text "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道,我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"
|
179 |
|
180 |
# Multi voice
|
181 |
+
# https://github.com/SWivid/F5-TTS/pull/146#issue-2595207852
|
182 |
python inference-cli.py -c samples/story.toml
|
183 |
```
|
184 |
|
|
|
215 |
python f5_tts/speech_edit.py
|
216 |
```
|
217 |
|
218 |
+
## [Evaluation](src/f5_tts/eval/README.md)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
## Acknowledgements
|
221 |
|
pyproject.toml
CHANGED
@@ -46,6 +46,7 @@ eval = [
|
|
46 |
"faster_whisper==0.10.1",
|
47 |
"funasr",
|
48 |
"jiwer",
|
|
|
49 |
"zhconv",
|
50 |
"zhon",
|
51 |
]
|
|
|
46 |
"faster_whisper==0.10.1",
|
47 |
"funasr",
|
48 |
"jiwer",
|
49 |
+
"modelscope",
|
50 |
"zhconv",
|
51 |
"zhon",
|
52 |
]
|
src/f5_tts/eval/README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Evaluation
|
3 |
+
|
4 |
+
Install packages for evaluation:
|
5 |
+
|
6 |
+
```bash
|
7 |
+
pip install -e .[eval]
|
8 |
+
```
|
9 |
+
|
10 |
+
### Prepare Test Datasets
|
11 |
+
|
12 |
+
1. *Seed-TTS testset*: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
|
13 |
+
2. *LibriSpeech test-clean*: Download from [OpenSLR](http://www.openslr.org/12/).
|
14 |
+
3. Unzip the downloaded datasets and place them in the `data/` directory.
|
15 |
+
4. Update the path for *LibriSpeech test-clean* data in `src/f5_tts/eval/eval_infer_batch.py`
|
16 |
+
5. Our filtered LibriSpeech-PC 4-10s subset: `data/librispeech_pc_test_clean_cross_sentence.lst`
|
17 |
+
|
18 |
+
### Batch Inference for Test Set
|
19 |
+
|
20 |
+
To run batch inference for evaluations, execute the following commands:
|
21 |
+
|
22 |
+
```bash
|
23 |
+
# batch inference for evaluations
|
24 |
+
accelerate config # if not set before
|
25 |
+
bash src/f5_tts/eval/eval_infer_batch.sh
|
26 |
+
```
|
27 |
+
|
28 |
+
### Download Evaluation Model Checkpoints
|
29 |
+
|
30 |
+
1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
|
31 |
+
2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
|
32 |
+
3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
|
33 |
+
|
34 |
+
Then update in the following scripts with the paths you put evaluation model ckpts to.
|
35 |
+
|
36 |
+
### Objective Evaluation
|
37 |
+
|
38 |
+
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
|
39 |
+
```bash
|
40 |
+
# Evaluation for Seed-TTS test set
|
41 |
+
python src/f5_tts/eval/eval_seedtts_testset.py
|
42 |
+
|
43 |
+
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
|
44 |
+
python src/f5_tts/eval/eval_librispeech_test_clean.py
|
45 |
+
```
|
src/f5_tts/eval/eval_infer_batch.py
CHANGED
@@ -14,9 +14,9 @@ from accelerate import Accelerator
|
|
14 |
from vocos import Vocos
|
15 |
|
16 |
from f5_tts.model import CFM, UNetT, DiT
|
17 |
-
from f5_tts.model.utils import
|
18 |
-
|
19 |
-
|
20 |
get_seedtts_testset_metainfo,
|
21 |
get_librispeech_test_clean_metainfo,
|
22 |
get_inference_prompt,
|
@@ -34,6 +34,7 @@ hop_length = 256
|
|
34 |
target_rms = 0.1
|
35 |
|
36 |
tokenizer = "pinyin"
|
|
|
37 |
|
38 |
|
39 |
def main():
|
@@ -58,7 +59,7 @@ def main():
|
|
58 |
dataset_name = args.dataset
|
59 |
exp_name = args.expname
|
60 |
ckpt_step = args.ckptstep
|
61 |
-
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
|
62 |
|
63 |
nfe_step = args.nfestep
|
64 |
ode_method = args.odemethod
|
@@ -80,23 +81,22 @@ def main():
|
|
80 |
model_cls = UNetT
|
81 |
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
82 |
|
83 |
-
datapath = files("f5_tts").joinpath("data")
|
84 |
-
|
85 |
if testset == "ls_pc_test_clean":
|
86 |
-
metalst =
|
87 |
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
88 |
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
|
89 |
|
90 |
elif testset == "seedtts_test_zh":
|
91 |
-
metalst =
|
92 |
metainfo = get_seedtts_testset_metainfo(metalst)
|
93 |
|
94 |
elif testset == "seedtts_test_en":
|
95 |
-
metalst =
|
96 |
metainfo = get_seedtts_testset_metainfo(metalst)
|
97 |
|
98 |
# path to save genereted wavs
|
99 |
output_dir = (
|
|
|
100 |
f"results/{exp_name}_{ckpt_step}/{testset}/"
|
101 |
f"seed{seed}_{ode_method}_nfe{nfe_step}"
|
102 |
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
|
|
|
14 |
from vocos import Vocos
|
15 |
|
16 |
from f5_tts.model import CFM, UNetT, DiT
|
17 |
+
from f5_tts.model.utils import get_tokenizer
|
18 |
+
from f5_tts.infer.utils_infer import load_checkpoint
|
19 |
+
from f5_tts.eval.utils_eval import (
|
20 |
get_seedtts_testset_metainfo,
|
21 |
get_librispeech_test_clean_metainfo,
|
22 |
get_inference_prompt,
|
|
|
34 |
target_rms = 0.1
|
35 |
|
36 |
tokenizer = "pinyin"
|
37 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
38 |
|
39 |
|
40 |
def main():
|
|
|
59 |
dataset_name = args.dataset
|
60 |
exp_name = args.expname
|
61 |
ckpt_step = args.ckptstep
|
62 |
+
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
63 |
|
64 |
nfe_step = args.nfestep
|
65 |
ode_method = args.odemethod
|
|
|
81 |
model_cls = UNetT
|
82 |
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
83 |
|
|
|
|
|
84 |
if testset == "ls_pc_test_clean":
|
85 |
+
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
86 |
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
87 |
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
|
88 |
|
89 |
elif testset == "seedtts_test_zh":
|
90 |
+
metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
|
91 |
metainfo = get_seedtts_testset_metainfo(metalst)
|
92 |
|
93 |
elif testset == "seedtts_test_en":
|
94 |
+
metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
|
95 |
metainfo = get_seedtts_testset_metainfo(metalst)
|
96 |
|
97 |
# path to save genereted wavs
|
98 |
output_dir = (
|
99 |
+
f"{rel_path}/"
|
100 |
f"results/{exp_name}_{ckpt_step}/{testset}/"
|
101 |
f"seed{seed}_{ode_method}_nfe{nfe_step}"
|
102 |
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
|
src/f5_tts/eval/eval_infer_batch.sh
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
#!/bin/bash
|
2 |
|
3 |
# e.g. F5-TTS, 16 NFE
|
4 |
-
accelerate launch
|
5 |
-
accelerate launch
|
6 |
-
accelerate launch
|
7 |
|
8 |
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
-
accelerate launch
|
10 |
-
accelerate launch
|
11 |
-
accelerate launch
|
12 |
|
13 |
# etc.
|
|
|
1 |
#!/bin/bash
|
2 |
|
3 |
# e.g. F5-TTS, 16 NFE
|
4 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
|
8 |
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
12 |
|
13 |
# etc.
|
src/f5_tts/eval/eval_librispeech_test_clean.py
CHANGED
@@ -6,18 +6,22 @@ import os
|
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
8 |
import multiprocessing as mp
|
|
|
|
|
9 |
import numpy as np
|
10 |
|
11 |
-
from f5_tts.
|
12 |
get_librispeech_test,
|
13 |
run_asr_wer,
|
14 |
run_sim,
|
15 |
)
|
16 |
|
|
|
|
|
17 |
|
18 |
eval_task = "wer" # sim | wer
|
19 |
lang = "en"
|
20 |
-
metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
|
21 |
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
22 |
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
23 |
|
|
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
8 |
import multiprocessing as mp
|
9 |
+
from importlib.resources import files
|
10 |
+
|
11 |
import numpy as np
|
12 |
|
13 |
+
from f5_tts.eval.utils_eval import (
|
14 |
get_librispeech_test,
|
15 |
run_asr_wer,
|
16 |
run_sim,
|
17 |
)
|
18 |
|
19 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
+
|
21 |
|
22 |
eval_task = "wer" # sim | wer
|
23 |
lang = "en"
|
24 |
+
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
25 |
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
26 |
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
27 |
|
src/f5_tts/eval/eval_seedtts_testset.py
CHANGED
@@ -6,19 +6,23 @@ import os
|
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
8 |
import multiprocessing as mp
|
|
|
|
|
9 |
import numpy as np
|
10 |
|
11 |
-
from f5_tts.
|
12 |
get_seed_tts_test,
|
13 |
run_asr_wer,
|
14 |
run_sim,
|
15 |
)
|
16 |
|
|
|
|
|
17 |
|
18 |
eval_task = "wer" # sim | wer
|
19 |
lang = "zh" # zh | en
|
20 |
-
metalst = f"data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
|
21 |
-
# gen_wav_dir = f"data/seedtts_testset/{lang}/wavs" # ground truth wavs
|
22 |
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
23 |
|
24 |
|
|
|
6 |
sys.path.append(os.getcwd())
|
7 |
|
8 |
import multiprocessing as mp
|
9 |
+
from importlib.resources import files
|
10 |
+
|
11 |
import numpy as np
|
12 |
|
13 |
+
from f5_tts.eval.utils_eval import (
|
14 |
get_seed_tts_test,
|
15 |
run_asr_wer,
|
16 |
run_sim,
|
17 |
)
|
18 |
|
19 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
+
|
21 |
|
22 |
eval_task = "wer" # sim | wer
|
23 |
lang = "zh" # zh | en
|
24 |
+
metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
|
25 |
+
# gen_wav_dir = rel_path + f"/data/seedtts_testset/{lang}/wavs" # ground truth wavs
|
26 |
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
27 |
|
28 |
|
src/f5_tts/infer/infer_gradio.py
CHANGED
@@ -52,13 +52,11 @@ E2TTS_ema_model = load_model(
|
|
52 |
UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
53 |
)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
|
60 |
|
61 |
-
def generate_response(messages):
|
62 |
"""Generate response using Qwen"""
|
63 |
text = tokenizer.apply_chat_template(
|
64 |
messages,
|
@@ -525,137 +523,157 @@ with gr.Blocks() as app_chat:
|
|
525 |
# Voice Chat
|
526 |
Have a conversation with an AI using your reference voice!
|
527 |
1. Upload a reference audio clip and optionally its transcript.
|
528 |
-
2.
|
529 |
-
3.
|
|
|
530 |
"""
|
531 |
)
|
532 |
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
)
|
558 |
|
559 |
-
|
560 |
-
|
561 |
-
with gr.Row():
|
562 |
-
with gr.Column():
|
563 |
-
audio_output_chat = gr.Audio(autoplay=True)
|
564 |
-
with gr.Column():
|
565 |
-
audio_input_chat = gr.Microphone(
|
566 |
-
label="Or speak your message",
|
567 |
-
type="filepath",
|
568 |
-
)
|
569 |
-
|
570 |
-
clear_btn_chat = gr.Button("Clear Conversation")
|
571 |
-
|
572 |
-
conversation_state = gr.State(
|
573 |
-
value=[
|
574 |
-
{
|
575 |
-
"role": "system",
|
576 |
-
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
577 |
-
}
|
578 |
-
]
|
579 |
-
)
|
580 |
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
|
|
|
|
|
|
|
|
585 |
|
586 |
-
|
587 |
-
|
|
|
|
|
|
|
588 |
|
589 |
-
|
590 |
-
|
591 |
|
592 |
-
|
593 |
-
|
594 |
|
595 |
-
|
|
|
596 |
|
597 |
-
|
598 |
-
history[-1] = (text, response)
|
599 |
|
600 |
-
|
|
|
601 |
|
602 |
-
|
603 |
-
"""Generate TTS audio for AI response"""
|
604 |
-
if not history or not ref_audio:
|
605 |
-
return None
|
606 |
-
|
607 |
-
last_user_message, last_ai_response = history[-1]
|
608 |
-
if not last_ai_response:
|
609 |
-
return None
|
610 |
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
)
|
620 |
-
return audio_result
|
621 |
-
|
622 |
-
def clear_conversation():
|
623 |
-
"""Reset the conversation"""
|
624 |
-
return [], [
|
625 |
-
{
|
626 |
-
"role": "system",
|
627 |
-
"content": "You are a friendly person, and may impersonate whoever they address you as. Stay in character. Keep your responses concise since they will be spoken out loud.",
|
628 |
-
}
|
629 |
-
]
|
630 |
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
# Handle audio input
|
637 |
-
audio_input_chat.stop_recording(
|
638 |
-
process_audio_input,
|
639 |
-
inputs=[audio_input_chat, chatbot_interface, conversation_state],
|
640 |
-
outputs=[chatbot_interface, conversation_state],
|
641 |
-
).then(
|
642 |
-
generate_audio_response,
|
643 |
-
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
644 |
-
outputs=audio_output_chat,
|
645 |
-
)
|
646 |
-
|
647 |
-
# Handle clear button
|
648 |
-
clear_btn_chat.click(
|
649 |
-
clear_conversation,
|
650 |
-
outputs=[chatbot_interface, conversation_state],
|
651 |
-
)
|
652 |
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
|
660 |
|
661 |
with gr.Blocks() as app:
|
|
|
52 |
UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
53 |
)
|
54 |
|
55 |
+
chat_model_state = None
|
56 |
+
chat_tokenizer_state = None
|
|
|
|
|
57 |
|
58 |
|
59 |
+
def generate_response(messages, model, tokenizer):
|
60 |
"""Generate response using Qwen"""
|
61 |
text = tokenizer.apply_chat_template(
|
62 |
messages,
|
|
|
523 |
# Voice Chat
|
524 |
Have a conversation with an AI using your reference voice!
|
525 |
1. Upload a reference audio clip and optionally its transcript.
|
526 |
+
2. Load the chat model.
|
527 |
+
3. Record your message through your microphone.
|
528 |
+
4. The AI will respond using the reference voice.
|
529 |
"""
|
530 |
)
|
531 |
|
532 |
+
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
|
533 |
+
|
534 |
+
chat_interface_container = gr.Column(visible=False)
|
535 |
+
|
536 |
+
def load_chat_model():
|
537 |
+
global chat_model_state, chat_tokenizer_state
|
538 |
+
if chat_model_state is None:
|
539 |
+
show_info = gr.Info
|
540 |
+
show_info("Loading chat model...")
|
541 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
542 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
543 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
544 |
+
show_info("Chat model loaded.")
|
545 |
+
|
546 |
+
return gr.update(visible=False), gr.update(visible=True)
|
547 |
+
|
548 |
+
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
|
549 |
+
|
550 |
+
with chat_interface_container:
|
551 |
+
with gr.Row():
|
552 |
+
with gr.Column():
|
553 |
+
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
|
554 |
+
with gr.Column():
|
555 |
+
with gr.Accordion("Advanced Settings", open=False):
|
556 |
+
model_choice_chat = gr.Radio(
|
557 |
+
choices=["F5-TTS", "E2-TTS"],
|
558 |
+
label="TTS Model",
|
559 |
+
value="F5-TTS",
|
560 |
+
)
|
561 |
+
remove_silence_chat = gr.Checkbox(
|
562 |
+
label="Remove Silences",
|
563 |
+
value=True,
|
564 |
+
)
|
565 |
+
ref_text_chat = gr.Textbox(
|
566 |
+
label="Reference Text",
|
567 |
+
info="Optional: Leave blank to auto-transcribe",
|
568 |
+
lines=2,
|
569 |
+
)
|
570 |
+
system_prompt_chat = gr.Textbox(
|
571 |
+
label="System Prompt",
|
572 |
+
value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
573 |
+
lines=2,
|
574 |
+
)
|
575 |
+
|
576 |
+
chatbot_interface = gr.Chatbot(label="Conversation")
|
577 |
+
|
578 |
+
with gr.Row():
|
579 |
+
with gr.Column():
|
580 |
+
audio_output_chat = gr.Audio(autoplay=True)
|
581 |
+
with gr.Column():
|
582 |
+
audio_input_chat = gr.Microphone(
|
583 |
+
label="Speak your message",
|
584 |
+
type="filepath",
|
585 |
)
|
586 |
|
587 |
+
clear_btn_chat = gr.Button("Clear Conversation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
588 |
|
589 |
+
conversation_state = gr.State(
|
590 |
+
value=[
|
591 |
+
{
|
592 |
+
"role": "system",
|
593 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
594 |
+
}
|
595 |
+
]
|
596 |
+
)
|
597 |
|
598 |
+
# Modify process_audio_input to use model and tokenizer from state
|
599 |
+
def process_audio_input(audio_path, history, conv_state):
|
600 |
+
"""Handle audio input from user"""
|
601 |
+
if not audio_path:
|
602 |
+
return history, conv_state, ""
|
603 |
|
604 |
+
text = ""
|
605 |
+
text = preprocess_ref_audio_text(audio_path, text)[1]
|
606 |
|
607 |
+
if not text.strip():
|
608 |
+
return history, conv_state, ""
|
609 |
|
610 |
+
conv_state.append({"role": "user", "content": text})
|
611 |
+
history.append((text, None))
|
612 |
|
613 |
+
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
|
|
614 |
|
615 |
+
conv_state.append({"role": "assistant", "content": response})
|
616 |
+
history[-1] = (text, response)
|
617 |
|
618 |
+
return history, conv_state, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
|
620 |
+
def generate_audio_response(history, ref_audio, ref_text, model, remove_silence):
|
621 |
+
"""Generate TTS audio for AI response"""
|
622 |
+
if not history or not ref_audio:
|
623 |
+
return None
|
624 |
+
|
625 |
+
last_user_message, last_ai_response = history[-1]
|
626 |
+
if not last_ai_response:
|
627 |
+
return None
|
628 |
+
|
629 |
+
audio_result, _ = infer(
|
630 |
+
ref_audio,
|
631 |
+
ref_text,
|
632 |
+
last_ai_response,
|
633 |
+
model,
|
634 |
+
remove_silence,
|
635 |
+
cross_fade_duration=0.15,
|
636 |
+
speed=1.0,
|
637 |
+
)
|
638 |
+
return audio_result
|
639 |
+
|
640 |
+
def clear_conversation():
|
641 |
+
"""Reset the conversation"""
|
642 |
+
return [], [
|
643 |
+
{
|
644 |
+
"role": "system",
|
645 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
646 |
+
}
|
647 |
+
]
|
648 |
+
|
649 |
+
def update_system_prompt(new_prompt):
|
650 |
+
"""Update the system prompt and reset the conversation"""
|
651 |
+
new_conv_state = [{"role": "system", "content": new_prompt}]
|
652 |
+
return [], new_conv_state
|
653 |
+
|
654 |
+
# Handle audio input
|
655 |
+
audio_input_chat.stop_recording(
|
656 |
+
process_audio_input,
|
657 |
+
inputs=[audio_input_chat, chatbot_interface, conversation_state],
|
658 |
+
outputs=[chatbot_interface, conversation_state],
|
659 |
+
).then(
|
660 |
+
generate_audio_response,
|
661 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
662 |
+
outputs=audio_output_chat,
|
663 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
+
# Handle clear button
|
666 |
+
clear_btn_chat.click(
|
667 |
+
clear_conversation,
|
668 |
+
outputs=[chatbot_interface, conversation_state],
|
669 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
670 |
|
671 |
+
# Handle system prompt change and reset conversation
|
672 |
+
system_prompt_chat.change(
|
673 |
+
update_system_prompt,
|
674 |
+
inputs=system_prompt_chat,
|
675 |
+
outputs=[chatbot_interface, conversation_state],
|
676 |
+
)
|
677 |
|
678 |
|
679 |
with gr.Blocks() as app:
|
src/f5_tts/infer/utils_infer.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# A unified script for inference process
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
|
|
|
4 |
import re
|
5 |
import tempfile
|
6 |
|
@@ -23,6 +24,7 @@ from f5_tts.model.utils import (
|
|
23 |
convert_char_to_pinyin,
|
24 |
)
|
25 |
|
|
|
26 |
|
27 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
28 |
|
@@ -194,23 +196,36 @@ def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=
|
|
194 |
aseg.export(f.name, format="wav")
|
195 |
ref_audio = f.name
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
return_timestamps=False,
|
208 |
-
)["text"].strip()
|
209 |
-
show_info("Finished transcription")
|
210 |
else:
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
-
#
|
214 |
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
215 |
if ref_text.endswith("."):
|
216 |
ref_text += " "
|
|
|
1 |
# A unified script for inference process
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
|
4 |
+
import hashlib
|
5 |
import re
|
6 |
import tempfile
|
7 |
|
|
|
24 |
convert_char_to_pinyin,
|
25 |
)
|
26 |
|
27 |
+
_ref_audio_cache = {}
|
28 |
|
29 |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
30 |
|
|
|
196 |
aseg.export(f.name, format="wav")
|
197 |
ref_audio = f.name
|
198 |
|
199 |
+
# Compute a hash of the reference audio file
|
200 |
+
with open(ref_audio, "rb") as audio_file:
|
201 |
+
audio_data = audio_file.read()
|
202 |
+
audio_hash = hashlib.md5(audio_data).hexdigest()
|
203 |
+
|
204 |
+
global _ref_audio_cache
|
205 |
+
if audio_hash in _ref_audio_cache:
|
206 |
+
# Use cached reference text
|
207 |
+
show_info("Using cached reference text...")
|
208 |
+
ref_text = _ref_audio_cache[audio_hash]
|
|
|
|
|
|
|
209 |
else:
|
210 |
+
if not ref_text.strip():
|
211 |
+
global asr_pipe
|
212 |
+
if asr_pipe is None:
|
213 |
+
initialize_asr_pipeline(device=device)
|
214 |
+
show_info("No reference text provided, transcribing reference audio...")
|
215 |
+
ref_text = asr_pipe(
|
216 |
+
ref_audio,
|
217 |
+
chunk_length_s=30,
|
218 |
+
batch_size=128,
|
219 |
+
generate_kwargs={"task": "transcribe"},
|
220 |
+
return_timestamps=False,
|
221 |
+
)["text"].strip()
|
222 |
+
show_info("Finished transcription")
|
223 |
+
else:
|
224 |
+
show_info("Using custom reference text...")
|
225 |
+
# Cache the transcribed text
|
226 |
+
_ref_audio_cache[audio_hash] = ref_text
|
227 |
|
228 |
+
# Ensure ref_text ends with a proper sentence-ending punctuation
|
229 |
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
230 |
if ref_text.endswith("."):
|
231 |
ref_text += " "
|
src/f5_tts/model/utils.py
CHANGED
@@ -2,8 +2,8 @@ from __future__ import annotations
|
|
2 |
|
3 |
import os
|
4 |
import random
|
5 |
-
from importlib.resources import files
|
6 |
from collections import defaultdict
|
|
|
7 |
|
8 |
import torch
|
9 |
from torch.nn.utils.rnn import pad_sequence
|
@@ -109,7 +109,7 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
109 |
- if use "byte", set to 256 (unicode byte range)
|
110 |
"""
|
111 |
if tokenizer in ["pinyin", "char"]:
|
112 |
-
tokenizer_path = os.path.join(files("f5_tts").joinpath("data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
113 |
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
vocab_char_map = {}
|
115 |
for i, char in enumerate(f):
|
@@ -120,6 +120,7 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
120 |
elif tokenizer == "byte":
|
121 |
vocab_char_map = None
|
122 |
vocab_size = 256
|
|
|
123 |
elif tokenizer == "custom":
|
124 |
with open(dataset_name, "r", encoding="utf-8") as f:
|
125 |
vocab_char_map = {}
|
|
|
2 |
|
3 |
import os
|
4 |
import random
|
|
|
5 |
from collections import defaultdict
|
6 |
+
from importlib.resources import files
|
7 |
|
8 |
import torch
|
9 |
from torch.nn.utils.rnn import pad_sequence
|
|
|
109 |
- if use "byte", set to 256 (unicode byte range)
|
110 |
"""
|
111 |
if tokenizer in ["pinyin", "char"]:
|
112 |
+
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
113 |
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
vocab_char_map = {}
|
115 |
for i, char in enumerate(f):
|
|
|
120 |
elif tokenizer == "byte":
|
121 |
vocab_char_map = None
|
122 |
vocab_size = 256
|
123 |
+
|
124 |
elif tokenizer == "custom":
|
125 |
with open(dataset_name, "r", encoding="utf-8") as f:
|
126 |
vocab_char_map = {}
|