Spaces:
Configuration error
Configuration error
Chi Kim
commited on
Commit
·
d393827
1
Parent(s):
408075f
Inference commandline interface.
Browse files- inference-cli.py +391 -0
- inference-cli.toml +8 -0
- requirements.txt +2 -0
inference-cli.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
from einops import rearrange
|
8 |
+
from vocos import Vocos
|
9 |
+
from pydub import AudioSegment, silence
|
10 |
+
from model import CFM, UNetT, DiT, MMDiT
|
11 |
+
from cached_path import cached_path
|
12 |
+
from model.utils import (
|
13 |
+
load_checkpoint,
|
14 |
+
get_tokenizer,
|
15 |
+
convert_char_to_pinyin,
|
16 |
+
save_spectrogram,
|
17 |
+
)
|
18 |
+
from transformers import pipeline
|
19 |
+
import librosa
|
20 |
+
import click
|
21 |
+
import soundfile as sf
|
22 |
+
import tomllib
|
23 |
+
import argparse
|
24 |
+
import tqdm
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
parser = argparse.ArgumentParser(
|
28 |
+
prog="python3 inference-cli.py",
|
29 |
+
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
|
30 |
+
epilog="Specify options above to override one or more settings from config.",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"-c",
|
34 |
+
"--config",
|
35 |
+
help="Configuration file. Default=cli-config.toml",
|
36 |
+
default="inference-cli.toml",
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"-m",
|
40 |
+
"--model",
|
41 |
+
help="F5-TTS | E2-TTS",
|
42 |
+
)
|
43 |
+
parser.add_argument(
|
44 |
+
"-r",
|
45 |
+
"--reference",
|
46 |
+
type=str,
|
47 |
+
help="Reference audio file < 15 seconds."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"-s",
|
51 |
+
"--subtitle",
|
52 |
+
type=str,
|
53 |
+
help="Subtitle for the reference audio."
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"-t",
|
57 |
+
"--text",
|
58 |
+
type=str,
|
59 |
+
help="Text to generate.",
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"-o",
|
63 |
+
"--output_dir",
|
64 |
+
type=str,
|
65 |
+
help="Path to output folder..",
|
66 |
+
)
|
67 |
+
parser.add_argument(
|
68 |
+
"--remove_silence",
|
69 |
+
help="Remove silence.",
|
70 |
+
)
|
71 |
+
args = parser.parse_args()
|
72 |
+
|
73 |
+
config = tomllib.load(open(args.config, "rb"))
|
74 |
+
|
75 |
+
ref_audio = args.reference if args.reference else config["reference"]
|
76 |
+
ref_text = args.subtitle if args.subtitle else config["subtitle"]
|
77 |
+
gen_text = args.text if args.text else config["text"]
|
78 |
+
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
79 |
+
exp_name = args.model if args.model else config["model"]
|
80 |
+
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
81 |
+
wave_path = Path(output_dir)/"out.wav"
|
82 |
+
spectrogram_path = Path(output_dir)/"out.png"
|
83 |
+
|
84 |
+
SPLIT_WORDS = [
|
85 |
+
"but", "however", "nevertheless", "yet", "still",
|
86 |
+
"therefore", "thus", "hence", "consequently",
|
87 |
+
"moreover", "furthermore", "additionally",
|
88 |
+
"meanwhile", "alternatively", "otherwise",
|
89 |
+
"namely", "specifically", "for example", "such as",
|
90 |
+
"in fact", "indeed", "notably",
|
91 |
+
"in contrast", "on the other hand", "conversely",
|
92 |
+
"in conclusion", "to summarize", "finally"
|
93 |
+
]
|
94 |
+
|
95 |
+
device = (
|
96 |
+
"cuda"
|
97 |
+
if torch.cuda.is_available()
|
98 |
+
else "mps" if torch.backends.mps.is_available() else "cpu"
|
99 |
+
)
|
100 |
+
|
101 |
+
print(f"Using {device} device")
|
102 |
+
|
103 |
+
pipe = pipeline(
|
104 |
+
"automatic-speech-recognition",
|
105 |
+
model="openai/whisper-large-v3-turbo",
|
106 |
+
torch_dtype=torch.float16,
|
107 |
+
device=device,
|
108 |
+
)
|
109 |
+
|
110 |
+
# --------------------- Settings -------------------- #
|
111 |
+
|
112 |
+
target_sample_rate = 24000
|
113 |
+
n_mel_channels = 100
|
114 |
+
hop_length = 256
|
115 |
+
target_rms = 0.1
|
116 |
+
nfe_step = 32 # 16, 32
|
117 |
+
cfg_strength = 2.0
|
118 |
+
ode_method = "euler"
|
119 |
+
sway_sampling_coef = -1.0
|
120 |
+
speed = 1.0
|
121 |
+
# fix_duration = 27 # None or float (duration in seconds)
|
122 |
+
fix_duration = None
|
123 |
+
|
124 |
+
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
125 |
+
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.safetensors"))
|
126 |
+
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
|
127 |
+
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
128 |
+
model = CFM(
|
129 |
+
transformer=model_cls(
|
130 |
+
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
|
131 |
+
),
|
132 |
+
mel_spec_kwargs=dict(
|
133 |
+
target_sample_rate=target_sample_rate,
|
134 |
+
n_mel_channels=n_mel_channels,
|
135 |
+
hop_length=hop_length,
|
136 |
+
),
|
137 |
+
odeint_kwargs=dict(
|
138 |
+
method=ode_method,
|
139 |
+
),
|
140 |
+
vocab_char_map=vocab_char_map,
|
141 |
+
).to(device)
|
142 |
+
|
143 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
|
144 |
+
|
145 |
+
return model
|
146 |
+
|
147 |
+
|
148 |
+
# load models
|
149 |
+
F5TTS_model_cfg = dict(
|
150 |
+
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
151 |
+
)
|
152 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
153 |
+
|
154 |
+
F5TTS_ema_model = load_model(
|
155 |
+
"F5TTS_Base", DiT, F5TTS_model_cfg, 1200000
|
156 |
+
)
|
157 |
+
E2TTS_ema_model = load_model(
|
158 |
+
"E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000
|
159 |
+
)
|
160 |
+
|
161 |
+
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
162 |
+
if len(text.encode('utf-8')) <= max_chars:
|
163 |
+
return [text]
|
164 |
+
if text[-1] not in ['。', '.', '!', '!', '?', '?']:
|
165 |
+
text += '.'
|
166 |
+
|
167 |
+
sentences = re.split('([。.!?!?])', text)
|
168 |
+
sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
|
169 |
+
|
170 |
+
batches = []
|
171 |
+
current_batch = ""
|
172 |
+
|
173 |
+
def split_by_words(text):
|
174 |
+
words = text.split()
|
175 |
+
current_word_part = ""
|
176 |
+
word_batches = []
|
177 |
+
for word in words:
|
178 |
+
if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
|
179 |
+
current_word_part += word + ' '
|
180 |
+
else:
|
181 |
+
if current_word_part:
|
182 |
+
# Try to find a suitable split word
|
183 |
+
for split_word in split_words:
|
184 |
+
split_index = current_word_part.rfind(' ' + split_word + ' ')
|
185 |
+
if split_index != -1:
|
186 |
+
word_batches.append(current_word_part[:split_index].strip())
|
187 |
+
current_word_part = current_word_part[split_index:].strip() + ' '
|
188 |
+
break
|
189 |
+
else:
|
190 |
+
# If no suitable split word found, just append the current part
|
191 |
+
word_batches.append(current_word_part.strip())
|
192 |
+
current_word_part = ""
|
193 |
+
current_word_part += word + ' '
|
194 |
+
if current_word_part:
|
195 |
+
word_batches.append(current_word_part.strip())
|
196 |
+
return word_batches
|
197 |
+
|
198 |
+
for sentence in sentences:
|
199 |
+
if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
|
200 |
+
current_batch += sentence
|
201 |
+
else:
|
202 |
+
# If adding this sentence would exceed the limit
|
203 |
+
if current_batch:
|
204 |
+
batches.append(current_batch)
|
205 |
+
current_batch = ""
|
206 |
+
|
207 |
+
# If the sentence itself is longer than max_chars, split it
|
208 |
+
if len(sentence.encode('utf-8')) > max_chars:
|
209 |
+
# First, try to split by colon
|
210 |
+
colon_parts = sentence.split(':')
|
211 |
+
if len(colon_parts) > 1:
|
212 |
+
for part in colon_parts:
|
213 |
+
if len(part.encode('utf-8')) <= max_chars:
|
214 |
+
batches.append(part)
|
215 |
+
else:
|
216 |
+
# If colon part is still too long, split by comma
|
217 |
+
comma_parts = re.split('[,,]', part)
|
218 |
+
if len(comma_parts) > 1:
|
219 |
+
current_comma_part = ""
|
220 |
+
for comma_part in comma_parts:
|
221 |
+
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
222 |
+
current_comma_part += comma_part + ','
|
223 |
+
else:
|
224 |
+
if current_comma_part:
|
225 |
+
batches.append(current_comma_part.rstrip(','))
|
226 |
+
current_comma_part = comma_part + ','
|
227 |
+
if current_comma_part:
|
228 |
+
batches.append(current_comma_part.rstrip(','))
|
229 |
+
else:
|
230 |
+
# If no comma, split by words
|
231 |
+
batches.extend(split_by_words(part))
|
232 |
+
else:
|
233 |
+
# If no colon, split by comma
|
234 |
+
comma_parts = re.split('[,,]', sentence)
|
235 |
+
if len(comma_parts) > 1:
|
236 |
+
current_comma_part = ""
|
237 |
+
for comma_part in comma_parts:
|
238 |
+
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
|
239 |
+
current_comma_part += comma_part + ','
|
240 |
+
else:
|
241 |
+
if current_comma_part:
|
242 |
+
batches.append(current_comma_part.rstrip(','))
|
243 |
+
current_comma_part = comma_part + ','
|
244 |
+
if current_comma_part:
|
245 |
+
batches.append(current_comma_part.rstrip(','))
|
246 |
+
else:
|
247 |
+
# If no comma, split by words
|
248 |
+
batches.extend(split_by_words(sentence))
|
249 |
+
else:
|
250 |
+
current_batch = sentence
|
251 |
+
|
252 |
+
if current_batch:
|
253 |
+
batches.append(current_batch)
|
254 |
+
|
255 |
+
return batches
|
256 |
+
|
257 |
+
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence):
|
258 |
+
if exp_name == "F5-TTS":
|
259 |
+
ema_model = F5TTS_ema_model
|
260 |
+
elif exp_name == "E2-TTS":
|
261 |
+
ema_model = E2TTS_ema_model
|
262 |
+
|
263 |
+
audio, sr = torchaudio.load(ref_audio)
|
264 |
+
if audio.shape[0] > 1:
|
265 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
266 |
+
|
267 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
268 |
+
if rms < target_rms:
|
269 |
+
audio = audio * target_rms / rms
|
270 |
+
if sr != target_sample_rate:
|
271 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
272 |
+
audio = resampler(audio)
|
273 |
+
audio = audio.to(device)
|
274 |
+
|
275 |
+
generated_waves = []
|
276 |
+
spectrograms = []
|
277 |
+
|
278 |
+
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
|
279 |
+
# Prepare the text
|
280 |
+
if len(ref_text[-1].encode('utf-8')) == 1:
|
281 |
+
ref_text = ref_text + " "
|
282 |
+
text_list = [ref_text + gen_text]
|
283 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
284 |
+
|
285 |
+
# Calculate duration
|
286 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
287 |
+
zh_pause_punc = r"。,、;:?!"
|
288 |
+
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
|
289 |
+
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
290 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
291 |
+
|
292 |
+
# inference
|
293 |
+
with torch.inference_mode():
|
294 |
+
generated, _ = ema_model.sample(
|
295 |
+
cond=audio,
|
296 |
+
text=final_text_list,
|
297 |
+
duration=duration,
|
298 |
+
steps=nfe_step,
|
299 |
+
cfg_strength=cfg_strength,
|
300 |
+
sway_sampling_coef=sway_sampling_coef,
|
301 |
+
)
|
302 |
+
|
303 |
+
generated = generated[:, ref_audio_len:, :]
|
304 |
+
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
|
305 |
+
|
306 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
307 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
308 |
+
if rms < target_rms:
|
309 |
+
generated_wave = generated_wave * rms / target_rms
|
310 |
+
|
311 |
+
# wav -> numpy
|
312 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
313 |
+
|
314 |
+
generated_waves.append(generated_wave)
|
315 |
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
316 |
+
|
317 |
+
# Combine all generated waves
|
318 |
+
final_wave = np.concatenate(generated_waves)
|
319 |
+
|
320 |
+
# Remove silence
|
321 |
+
if remove_silence:
|
322 |
+
with open(wave_path, "wb") as f:
|
323 |
+
sf.write(f.name, final_wave, target_sample_rate)
|
324 |
+
aseg = AudioSegment.from_file(f.name)
|
325 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
326 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
327 |
+
for non_silent_seg in non_silent_segs:
|
328 |
+
non_silent_wave += non_silent_seg
|
329 |
+
aseg = non_silent_wave
|
330 |
+
aseg.export(f.name, format="wav")
|
331 |
+
print(f.name)
|
332 |
+
|
333 |
+
# Create a combined spectrogram
|
334 |
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
335 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
336 |
+
print(spectrogram_path)
|
337 |
+
|
338 |
+
|
339 |
+
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words):
|
340 |
+
if not custom_split_words.strip():
|
341 |
+
custom_words = [word.strip() for word in custom_split_words.split(',')]
|
342 |
+
global SPLIT_WORDS
|
343 |
+
SPLIT_WORDS = custom_words
|
344 |
+
|
345 |
+
print(gen_text)
|
346 |
+
|
347 |
+
print("Converting audio...")
|
348 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
349 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
350 |
+
|
351 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
352 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
353 |
+
for non_silent_seg in non_silent_segs:
|
354 |
+
non_silent_wave += non_silent_seg
|
355 |
+
aseg = non_silent_wave
|
356 |
+
|
357 |
+
audio_duration = len(aseg)
|
358 |
+
if audio_duration > 15000:
|
359 |
+
print("Audio is over 15s, clipping to only first 15s.")
|
360 |
+
aseg = aseg[:15000]
|
361 |
+
aseg.export(f.name, format="wav")
|
362 |
+
ref_audio = f.name
|
363 |
+
|
364 |
+
if not ref_text.strip():
|
365 |
+
print("No reference text provided, transcribing reference audio...")
|
366 |
+
ref_text = pipe(
|
367 |
+
ref_audio,
|
368 |
+
chunk_length_s=30,
|
369 |
+
batch_size=128,
|
370 |
+
generate_kwargs={"task": "transcribe"},
|
371 |
+
return_timestamps=False,
|
372 |
+
)["text"].strip()
|
373 |
+
print("Finished transcription")
|
374 |
+
else:
|
375 |
+
print("Using custom reference text...")
|
376 |
+
|
377 |
+
# Split the input text into batches
|
378 |
+
if len(ref_text.encode('utf-8')) == len(ref_text) and len(gen_text.encode('utf-8')) == len(gen_text):
|
379 |
+
max_chars = 400-len(ref_text.encode('utf-8'))
|
380 |
+
else:
|
381 |
+
max_chars = 300-len(ref_text.encode('utf-8'))
|
382 |
+
gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
|
383 |
+
print('ref_text', ref_text)
|
384 |
+
for i, gen_text in enumerate(gen_text_batches):
|
385 |
+
print(f'gen_text {i}', gen_text)
|
386 |
+
|
387 |
+
print(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
|
388 |
+
return infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence)
|
389 |
+
|
390 |
+
|
391 |
+
infer(ref_audio, ref_text, gen_text, exp_name, remove_silence, ",".join(SPLIT_WORDS))
|
inference-cli.toml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
+
reference = "tests/ref_audio/test_en_1_ref_short.wav"
|
4 |
+
# If an empty "", transcribes the reference audio automatically.
|
5 |
+
subtitle = "Some call me nature, others call me mother nature."
|
6 |
+
text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
7 |
+
remove_silence = true
|
8 |
+
output_dir = "tests"
|
requirements.txt
CHANGED
@@ -21,3 +21,5 @@ wandb
|
|
21 |
x_transformers>=1.31.14
|
22 |
zhconv
|
23 |
zhon
|
|
|
|
|
|
21 |
x_transformers>=1.31.14
|
22 |
zhconv
|
23 |
zhon
|
24 |
+
pydub
|
25 |
+
cached_path
|