Spaces:
Configuration error
Configuration error
basic structure
Browse files- src/f5_tts/model/trainer.py +44 -90
- src/f5_tts/model/utils.py +0 -75
- src/f5_tts/train/finetune_cli.py +5 -5
- src/f5_tts/train/finetune_gradio.py +9 -21
src/f5_tts/model/trainer.py
CHANGED
@@ -3,9 +3,10 @@ from __future__ import annotations
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
-
|
7 |
|
8 |
import torch
|
|
|
9 |
from torch.optim import AdamW
|
10 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
11 |
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
@@ -19,6 +20,7 @@ from f5_tts.model import CFM
|
|
19 |
from f5_tts.model.utils import exists, default
|
20 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
21 |
|
|
|
22 |
# trainer
|
23 |
|
24 |
|
@@ -38,33 +40,32 @@ class Trainer:
|
|
38 |
max_grad_norm=1.0,
|
39 |
noise_scheduler: str | None = None,
|
40 |
duration_predictor: torch.nn.Module | None = None,
|
41 |
-
logger: str = "wandb", #
|
42 |
-
log_dir: str = "logs", # Add log directory parameter
|
43 |
wandb_project="test_e2-tts",
|
44 |
wandb_run_name="test_run",
|
45 |
wandb_resume_id: str = None,
|
|
|
46 |
last_per_steps=None,
|
47 |
accelerate_kwargs: dict = dict(),
|
48 |
ema_kwargs: dict = dict(),
|
49 |
bnb_optimizer: bool = False,
|
50 |
-
export_samples=False,
|
51 |
):
|
52 |
-
# export audio and mel
|
53 |
-
self.export_samples = export_samples
|
54 |
-
if export_samples:
|
55 |
-
self.path_ckpts_project = checkpoint_path
|
56 |
-
|
57 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
self.logger = logger
|
60 |
if self.logger == "wandb":
|
61 |
-
self.accelerator = Accelerator(
|
62 |
-
log_with="wandb",
|
63 |
-
kwargs_handlers=[ddp_kwargs],
|
64 |
-
gradient_accumulation_steps=grad_accumulation_steps,
|
65 |
-
**accelerate_kwargs,
|
66 |
-
)
|
67 |
-
|
68 |
if exists(wandb_resume_id):
|
69 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
70 |
else:
|
@@ -86,24 +87,11 @@ class Trainer:
|
|
86 |
"noise_scheduler": noise_scheduler,
|
87 |
},
|
88 |
)
|
|
|
89 |
elif self.logger == "tensorboard":
|
90 |
from torch.utils.tensorboard import SummaryWriter
|
91 |
|
92 |
-
self.
|
93 |
-
kwargs_handlers=[ddp_kwargs],
|
94 |
-
gradient_accumulation_steps=grad_accumulation_steps,
|
95 |
-
**accelerate_kwargs,
|
96 |
-
)
|
97 |
-
if self.is_main:
|
98 |
-
path_log_dir = os.path.join(log_dir, wandb_project)
|
99 |
-
os.makedirs(path_log_dir, exist_ok=True)
|
100 |
-
existing_folders = [folder for folder in os.listdir(path_log_dir) if folder.startswith("exp")]
|
101 |
-
next_number = len(existing_folders) + 2
|
102 |
-
folder_name = f"exp{next_number}"
|
103 |
-
folder_path = os.path.join(path_log_dir, folder_name)
|
104 |
-
os.makedirs(folder_path, exist_ok=True)
|
105 |
-
|
106 |
-
self.writer = SummaryWriter(log_dir=folder_path)
|
107 |
|
108 |
self.model = model
|
109 |
|
@@ -198,31 +186,13 @@ class Trainer:
|
|
198 |
gc.collect()
|
199 |
return step
|
200 |
|
201 |
-
def log(self, metrics, step):
|
202 |
-
"""Unified logging method for both WandB and TensorBoard"""
|
203 |
-
if self.logger == "none":
|
204 |
-
return
|
205 |
-
if self.logger == "wandb":
|
206 |
-
self.accelerator.log(metrics, step=step)
|
207 |
-
elif self.is_main:
|
208 |
-
for key, value in metrics.items():
|
209 |
-
self.writer.add_scalar(key, value, step)
|
210 |
-
|
211 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
212 |
-
|
213 |
-
|
214 |
-
from f5_tts.infer.utils_infer import (
|
215 |
-
target_sample_rate,
|
216 |
-
hop_length,
|
217 |
-
nfe_step,
|
218 |
-
cfg_strength,
|
219 |
-
sway_sampling_coef,
|
220 |
-
vocos,
|
221 |
-
)
|
222 |
-
from f5_tts.model.utils import get_sample
|
223 |
|
224 |
-
|
225 |
-
|
|
|
226 |
|
227 |
if exists(resumable_with_seed):
|
228 |
generator = torch.Generator()
|
@@ -307,7 +277,6 @@ class Trainer:
|
|
307 |
for batch in progress_bar:
|
308 |
with self.accelerator.accumulate(self.model):
|
309 |
text_inputs = batch["text"]
|
310 |
-
|
311 |
mel_spec = batch["mel"].permute(0, 2, 1)
|
312 |
mel_lengths = batch["mel_lengths"]
|
313 |
|
@@ -319,40 +288,6 @@ class Trainer:
|
|
319 |
loss, cond, pred = self.model(
|
320 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
321 |
)
|
322 |
-
|
323 |
-
# save 4 audio per save step
|
324 |
-
if (
|
325 |
-
self.accelerator.is_local_main_process
|
326 |
-
and self.export_samples
|
327 |
-
and global_step % (int(self.save_per_updates * 0.25) * self.grad_accumulation_steps) == 0
|
328 |
-
):
|
329 |
-
try:
|
330 |
-
wave_org, wave_gen, mel_org, mel_gen = get_sample(
|
331 |
-
vocos,
|
332 |
-
self.model,
|
333 |
-
self.file_path_samples,
|
334 |
-
global_step,
|
335 |
-
batch["mel"][0],
|
336 |
-
text_inputs,
|
337 |
-
target_sample_rate,
|
338 |
-
hop_length,
|
339 |
-
nfe_step,
|
340 |
-
cfg_strength,
|
341 |
-
sway_sampling_coef,
|
342 |
-
)
|
343 |
-
|
344 |
-
if self.logger == "tensorboard":
|
345 |
-
self.writer.add_audio(
|
346 |
-
"Audio/original", wave_org, global_step, sample_rate=target_sample_rate
|
347 |
-
)
|
348 |
-
self.writer.add_audio(
|
349 |
-
"Audio/generate", wave_gen, global_step, sample_rate=target_sample_rate
|
350 |
-
)
|
351 |
-
self.writer.add_image("Mel/original", mel_org, global_step, dataformats="CHW")
|
352 |
-
self.writer.add_image("Mel/generate", mel_gen, global_step, dataformats="CHW")
|
353 |
-
except Exception as e:
|
354 |
-
print("An error occurred:", e)
|
355 |
-
|
356 |
self.accelerator.backward(loss)
|
357 |
|
358 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
@@ -368,13 +303,32 @@ class Trainer:
|
|
368 |
global_step += 1
|
369 |
|
370 |
if self.accelerator.is_local_main_process:
|
371 |
-
self.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
|
|
|
|
|
|
372 |
|
373 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
374 |
|
375 |
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
376 |
self.save_checkpoint(global_step)
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
if global_step % self.last_per_steps == 0:
|
379 |
self.save_checkpoint(global_step, last=True)
|
380 |
|
|
|
3 |
import os
|
4 |
import gc
|
5 |
from tqdm import tqdm
|
6 |
+
import wandb
|
7 |
|
8 |
import torch
|
9 |
+
import torchaudio
|
10 |
from torch.optim import AdamW
|
11 |
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
12 |
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
|
|
20 |
from f5_tts.model.utils import exists, default
|
21 |
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
22 |
|
23 |
+
|
24 |
# trainer
|
25 |
|
26 |
|
|
|
40 |
max_grad_norm=1.0,
|
41 |
noise_scheduler: str | None = None,
|
42 |
duration_predictor: torch.nn.Module | None = None,
|
43 |
+
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
|
|
44 |
wandb_project="test_e2-tts",
|
45 |
wandb_run_name="test_run",
|
46 |
wandb_resume_id: str = None,
|
47 |
+
log_samples: bool = False,
|
48 |
last_per_steps=None,
|
49 |
accelerate_kwargs: dict = dict(),
|
50 |
ema_kwargs: dict = dict(),
|
51 |
bnb_optimizer: bool = False,
|
|
|
52 |
):
|
|
|
|
|
|
|
|
|
|
|
53 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
54 |
|
55 |
+
if logger == "wandb" and not wandb.api.api_key:
|
56 |
+
logger = None
|
57 |
+
print(f"Using logger: {logger}")
|
58 |
+
self.log_samples = log_samples
|
59 |
+
|
60 |
+
self.accelerator = Accelerator(
|
61 |
+
log_with=logger if logger == "wandb" else None,
|
62 |
+
kwargs_handlers=[ddp_kwargs],
|
63 |
+
gradient_accumulation_steps=grad_accumulation_steps,
|
64 |
+
**accelerate_kwargs,
|
65 |
+
)
|
66 |
+
|
67 |
self.logger = logger
|
68 |
if self.logger == "wandb":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
if exists(wandb_resume_id):
|
70 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
71 |
else:
|
|
|
87 |
"noise_scheduler": noise_scheduler,
|
88 |
},
|
89 |
)
|
90 |
+
|
91 |
elif self.logger == "tensorboard":
|
92 |
from torch.utils.tensorboard import SummaryWriter
|
93 |
|
94 |
+
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
self.model = model
|
97 |
|
|
|
186 |
gc.collect()
|
187 |
return step
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
190 |
+
if self.log_samples:
|
191 |
+
from f5_tts.infer.utils_infer import vocos, nfe_step, cfg_strength, sway_sampling_coef
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
target_sample_rate = self.model.mel_spec.mel_stft.sample_rate
|
194 |
+
log_samples_path = f"{self.checkpoint_path}/samples"
|
195 |
+
os.makedirs(log_samples_path, exist_ok=True)
|
196 |
|
197 |
if exists(resumable_with_seed):
|
198 |
generator = torch.Generator()
|
|
|
277 |
for batch in progress_bar:
|
278 |
with self.accelerator.accumulate(self.model):
|
279 |
text_inputs = batch["text"]
|
|
|
280 |
mel_spec = batch["mel"].permute(0, 2, 1)
|
281 |
mel_lengths = batch["mel_lengths"]
|
282 |
|
|
|
288 |
loss, cond, pred = self.model(
|
289 |
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
290 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
self.accelerator.backward(loss)
|
292 |
|
293 |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
|
|
303 |
global_step += 1
|
304 |
|
305 |
if self.accelerator.is_local_main_process:
|
306 |
+
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
307 |
+
if self.logger == "tensorboard":
|
308 |
+
self.writer.add_scalar("loss", loss.item(), global_step)
|
309 |
+
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
|
310 |
|
311 |
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
312 |
|
313 |
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
314 |
self.save_checkpoint(global_step)
|
315 |
|
316 |
+
if self.log_samples:
|
317 |
+
ref_audio, ref_audio_len = vocos.decode([batch["mel"][0]].cpu()), mel_lengths[0]
|
318 |
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
|
319 |
+
with torch.inference_mode():
|
320 |
+
generated, _ = self.model.sample(
|
321 |
+
cond=[mel_spec[0][:ref_audio_len]],
|
322 |
+
text=[text_inputs[0] + [" "] + text_inputs[0]],
|
323 |
+
duration=ref_audio_len * 2,
|
324 |
+
steps=nfe_step,
|
325 |
+
cfg_strength=cfg_strength,
|
326 |
+
sway_sampling_coef=sway_sampling_coef,
|
327 |
+
)
|
328 |
+
generated = generated.to(torch.float32)
|
329 |
+
gen_audio = vocos.decode(generated[:, ref_audio_len:, :].permute(0, 2, 1).cpu())
|
330 |
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio, target_sample_rate)
|
331 |
+
|
332 |
if global_step % self.last_per_steps == 0:
|
333 |
self.save_checkpoint(global_step, last=True)
|
334 |
|
src/f5_tts/model/utils.py
CHANGED
@@ -11,10 +11,6 @@ from torch.nn.utils.rnn import pad_sequence
|
|
11 |
import jieba
|
12 |
from pypinyin import lazy_pinyin, Style
|
13 |
|
14 |
-
import numpy as np
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import soundfile as sf
|
17 |
-
import torchaudio
|
18 |
|
19 |
# seed everything
|
20 |
|
@@ -187,74 +183,3 @@ def repetition_found(text, length=2, tolerance=10):
|
|
187 |
if count > tolerance:
|
188 |
return True
|
189 |
return False
|
190 |
-
|
191 |
-
|
192 |
-
def normalize_and_colorize_spectrogram(mel_org):
|
193 |
-
mel_min, mel_max = mel_org.min(), mel_org.max()
|
194 |
-
mel_norm = (mel_org - mel_min) / (mel_max - mel_min + 1e-8)
|
195 |
-
mel_colored = plt.get_cmap("viridis")(mel_norm.detach().cpu().numpy())[:, :, :3]
|
196 |
-
mel_colored = np.transpose(mel_colored, (2, 0, 1))
|
197 |
-
mel_colored = np.flip(mel_colored, axis=1)
|
198 |
-
return mel_colored
|
199 |
-
|
200 |
-
|
201 |
-
def export_audio(file_out, wav, target_sample_rate):
|
202 |
-
sf.write(file_out, wav, samplerate=target_sample_rate)
|
203 |
-
|
204 |
-
|
205 |
-
def export_mel(mel_colored_hwc, file_out):
|
206 |
-
plt.imsave(file_out, mel_colored_hwc)
|
207 |
-
|
208 |
-
|
209 |
-
def gen_sample(model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef):
|
210 |
-
audio, sr = torchaudio.load(file_wav_org)
|
211 |
-
audio = audio.to("cuda")
|
212 |
-
ref_audio_len = audio.shape[-1] // hop_length
|
213 |
-
text = [text_inputs[0] + [" . "] + text_inputs[0]]
|
214 |
-
duration = int((audio.shape[1] / 256) * 2.0)
|
215 |
-
with torch.inference_mode():
|
216 |
-
generated_gen, _ = model.sample(
|
217 |
-
cond=audio,
|
218 |
-
text=text,
|
219 |
-
duration=duration,
|
220 |
-
steps=nfe_step,
|
221 |
-
cfg_strength=cfg_strength,
|
222 |
-
sway_sampling_coef=sway_sampling_coef,
|
223 |
-
)
|
224 |
-
generated_gen = generated_gen.to(torch.float32)
|
225 |
-
generated_gen = generated_gen[:, ref_audio_len:, :]
|
226 |
-
generated_mel_spec_gen = generated_gen.permute(0, 2, 1)
|
227 |
-
generated_wave_gen = vocos.decode(generated_mel_spec_gen.cpu())
|
228 |
-
generated_wave_gen = generated_wave_gen.squeeze().cpu().numpy()
|
229 |
-
return generated_wave_gen, generated_mel_spec_gen
|
230 |
-
|
231 |
-
|
232 |
-
def get_sample(
|
233 |
-
vocos,
|
234 |
-
model,
|
235 |
-
file_path_samples,
|
236 |
-
global_step,
|
237 |
-
mel_org,
|
238 |
-
text_inputs,
|
239 |
-
target_sample_rate,
|
240 |
-
hop_length,
|
241 |
-
nfe_step,
|
242 |
-
cfg_strength,
|
243 |
-
sway_sampling_coef,
|
244 |
-
):
|
245 |
-
generated_wave_org = vocos.decode(mel_org.unsqueeze(0).cpu())
|
246 |
-
generated_wave_org = generated_wave_org.squeeze().cpu().numpy()
|
247 |
-
file_wav_org = os.path.join(file_path_samples, f"step_{global_step}_org.wav")
|
248 |
-
export_audio(file_wav_org, generated_wave_org, target_sample_rate)
|
249 |
-
generated_wave_gen, generated_mel_spec_gen = gen_sample(
|
250 |
-
model, vocos, file_wav_org, text_inputs, hop_length, nfe_step, cfg_strength, sway_sampling_coef
|
251 |
-
)
|
252 |
-
file_wav_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.wav")
|
253 |
-
export_audio(file_wav_gen, generated_wave_gen, target_sample_rate)
|
254 |
-
mel_org = normalize_and_colorize_spectrogram(mel_org)
|
255 |
-
mel_gen = normalize_and_colorize_spectrogram(generated_mel_spec_gen[0])
|
256 |
-
file_gen_org = os.path.join(file_path_samples, f"step_{global_step}_org.png")
|
257 |
-
export_mel(np.transpose(mel_org, (1, 2, 0)), file_gen_org)
|
258 |
-
file_gen_gen = os.path.join(file_path_samples, f"step_{global_step}_gen.png")
|
259 |
-
export_mel(np.transpose(mel_gen, (1, 2, 0)), file_gen_gen)
|
260 |
-
return generated_wave_org, generated_wave_gen, mel_org, mel_gen
|
|
|
11 |
import jieba
|
12 |
from pypinyin import lazy_pinyin, Style
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# seed everything
|
16 |
|
|
|
183 |
if count > tolerance:
|
184 |
return True
|
185 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/f5_tts/train/finetune_cli.py
CHANGED
@@ -57,12 +57,12 @@ def parse_args():
|
|
57 |
)
|
58 |
|
59 |
parser.add_argument(
|
60 |
-
"--
|
61 |
type=bool,
|
62 |
default=False,
|
63 |
-
help="
|
64 |
)
|
65 |
-
parser.add_argument("--logger", type=str, default=
|
66 |
|
67 |
return parser.parse_args()
|
68 |
|
@@ -141,12 +141,12 @@ def main():
|
|
141 |
max_samples=args.max_samples,
|
142 |
grad_accumulation_steps=args.grad_accumulation_steps,
|
143 |
max_grad_norm=args.max_grad_norm,
|
|
|
144 |
wandb_project=args.dataset_name,
|
145 |
wandb_run_name=args.exp_name,
|
146 |
wandb_resume_id=wandb_resume_id,
|
|
|
147 |
last_per_steps=args.last_per_steps,
|
148 |
-
logger=args.logger,
|
149 |
-
export_samples=args.export_samples,
|
150 |
)
|
151 |
|
152 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
|
57 |
)
|
58 |
|
59 |
parser.add_argument(
|
60 |
+
"--log_samples",
|
61 |
type=bool,
|
62 |
default=False,
|
63 |
+
help="Log inferenced samples per ckpt save steps",
|
64 |
)
|
65 |
+
parser.add_argument("--logger", type=str, default=None, choices=["wandb", "tensorboard"], help="logger")
|
66 |
|
67 |
return parser.parse_args()
|
68 |
|
|
|
141 |
max_samples=args.max_samples,
|
142 |
grad_accumulation_steps=args.grad_accumulation_steps,
|
143 |
max_grad_norm=args.max_grad_norm,
|
144 |
+
logger=args.logger,
|
145 |
wandb_project=args.dataset_name,
|
146 |
wandb_run_name=args.exp_name,
|
147 |
wandb_resume_id=wandb_resume_id,
|
148 |
+
log_samples=args.log_samples,
|
149 |
last_per_steps=args.last_per_steps,
|
|
|
|
|
150 |
)
|
151 |
|
152 |
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
src/f5_tts/train/finetune_gradio.py
CHANGED
@@ -453,7 +453,7 @@ def start_training(
|
|
453 |
|
454 |
cmd += f" --tokenizer {tokenizer_type} "
|
455 |
|
456 |
-
cmd += f" --
|
457 |
|
458 |
print(cmd)
|
459 |
|
@@ -1321,18 +1321,14 @@ def get_combined_stats():
|
|
1321 |
|
1322 |
|
1323 |
def get_audio_select(file_sample):
|
1324 |
-
|
1325 |
select_audio_gen = file_sample
|
1326 |
-
select_image_org = file_sample
|
1327 |
-
select_image_gen = file_sample
|
1328 |
|
1329 |
if file_sample is not None:
|
1330 |
-
|
1331 |
select_audio_gen += "_gen.wav"
|
1332 |
-
select_image_org += "_org.png"
|
1333 |
-
select_image_gen += "_gen.png"
|
1334 |
|
1335 |
-
return
|
1336 |
|
1337 |
|
1338 |
with gr.Blocks() as app:
|
@@ -1515,7 +1511,7 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1515 |
|
1516 |
with gr.Row():
|
1517 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
|
1518 |
-
cd_logger = gr.Radio(label="logger", choices=["
|
1519 |
start_button = gr.Button("Start Training")
|
1520 |
stop_button = gr.Button("Stop Training", interactive=False)
|
1521 |
|
@@ -1562,16 +1558,12 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1562 |
|
1563 |
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1564 |
|
1565 |
-
|
1566 |
select_audio_gen = select_audio
|
1567 |
-
select_image_org = select_audio
|
1568 |
-
select_image_gen = select_audio
|
1569 |
|
1570 |
if select_audio is not None:
|
1571 |
-
|
1572 |
select_audio_gen += "_gen.wav"
|
1573 |
-
select_image_org += "_org.png"
|
1574 |
-
select_image_gen += "_gen.png"
|
1575 |
|
1576 |
with gr.Row():
|
1577 |
ch_list_audio = gr.Dropdown(
|
@@ -1587,17 +1579,13 @@ If you encounter a memory error, try reducing the batch size per GPU to a smalle
|
|
1587 |
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1588 |
|
1589 |
with gr.Row():
|
1590 |
-
|
1591 |
-
mel_org_stream = gr.Image(label="original", type="filepath", value=select_image_org)
|
1592 |
-
|
1593 |
-
with gr.Row():
|
1594 |
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
1595 |
-
mel_gen_stream = gr.Image(label="generate", type="filepath", value=select_image_gen)
|
1596 |
|
1597 |
ch_list_audio.change(
|
1598 |
fn=get_audio_select,
|
1599 |
inputs=[ch_list_audio],
|
1600 |
-
outputs=[
|
1601 |
)
|
1602 |
|
1603 |
start_button.click(
|
|
|
453 |
|
454 |
cmd += f" --tokenizer {tokenizer_type} "
|
455 |
|
456 |
+
cmd += f" --log_samples True --logger {logger} "
|
457 |
|
458 |
print(cmd)
|
459 |
|
|
|
1321 |
|
1322 |
|
1323 |
def get_audio_select(file_sample):
|
1324 |
+
select_audio_ref = file_sample
|
1325 |
select_audio_gen = file_sample
|
|
|
|
|
1326 |
|
1327 |
if file_sample is not None:
|
1328 |
+
select_audio_ref += "_ref.wav"
|
1329 |
select_audio_gen += "_gen.wav"
|
|
|
|
|
1330 |
|
1331 |
+
return select_audio_ref, select_audio_gen
|
1332 |
|
1333 |
|
1334 |
with gr.Blocks() as app:
|
|
|
1511 |
|
1512 |
with gr.Row():
|
1513 |
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
|
1514 |
+
cd_logger = gr.Radio(label="logger", choices=["wandb", "tensorboard"], value="wandb")
|
1515 |
start_button = gr.Button("Start Training")
|
1516 |
stop_button = gr.Button("Stop Training", interactive=False)
|
1517 |
|
|
|
1558 |
|
1559 |
list_audios, select_audio = get_audio_project(projects_selelect, False)
|
1560 |
|
1561 |
+
select_audio_ref = select_audio
|
1562 |
select_audio_gen = select_audio
|
|
|
|
|
1563 |
|
1564 |
if select_audio is not None:
|
1565 |
+
select_audio_ref += "_ref.wav"
|
1566 |
select_audio_gen += "_gen.wav"
|
|
|
|
|
1567 |
|
1568 |
with gr.Row():
|
1569 |
ch_list_audio = gr.Dropdown(
|
|
|
1579 |
cm_project.change(fn=get_audio_project, inputs=[cm_project], outputs=[ch_list_audio])
|
1580 |
|
1581 |
with gr.Row():
|
1582 |
+
audio_ref_stream = gr.Audio(label="original", type="filepath", value=select_audio_ref)
|
|
|
|
|
|
|
1583 |
audio_gen_stream = gr.Audio(label="generate", type="filepath", value=select_audio_gen)
|
|
|
1584 |
|
1585 |
ch_list_audio.change(
|
1586 |
fn=get_audio_select,
|
1587 |
inputs=[ch_list_audio],
|
1588 |
+
outputs=[audio_ref_stream, audio_gen_stream],
|
1589 |
)
|
1590 |
|
1591 |
start_button.click(
|