File size: 7,612 Bytes
168b252
 
 
53ef571
 
168b252
53ef571
168b252
53ef571
 
168b252
53ef571
 
168b252
 
53ef571
 
168b252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef571
168b252
 
 
 
 
6dcf9f2
 
168b252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef571
168b252
 
53ef571
168b252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef571
 
168b252
 
53ef571
168b252
 
 
 
b7d9de6
168b252
53ef571
168b252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef571
168b252
 
 
fe582be
168b252
 
53ef571
168b252
 
 
 
 
 
 
53ef571
168b252
 
 
 
 
53ef571
168b252
 
 
53ef571
168b252
 
 
 
 
 
 
 
fe582be
168b252
 
 
 
 
53ef571
168b252
 
 
 
 
 
 
 
53ef571
168b252
 
 
 
 
 
 
 
53ef571
 
 
 
 
0a8e54f
168b252
53ef571
6dcf9f2
53ef571
 
 
 
 
 
 
 
 
 
168b252
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import os
import shutil
import tempfile
import datetime
import numpy as np
import torch
import imageio
import trimesh

from PIL import Image
from typing import *
from gradio_litmodel3d import LitModel3D
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils

os.environ['SPCONV_ALGO'] = 'native'

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def preprocess_mesh(mesh_prompt):
    print("Processing mesh")
    trimesh_mesh = trimesh.load_mesh(mesh_prompt)
    trimesh_mesh.export(mesh_prompt+'.glb')
    return mesh_prompt+'.glb'

def preprocess_image(image):
    if image is None:
        return None
    image = pipeline.preprocess_image(image, resolution=1024)
    return image

def generate_3d(image, seed=-1,  
                ss_guidance_strength=3, ss_sampling_steps=50,
                slat_guidance_strength=3, slat_sampling_steps=6,):
    if image is None:
        return None, None, None, None

    if seed == -1:
        seed = np.random.randint(0, MAX_SEED)
    
    image = pipeline.preprocess_image(image, resolution=1024)
    normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')

    outputs = pipeline.run(
        normal_image,
        seed=seed,
        formats=["mesh",],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    generated_mesh = outputs['mesh'][0]
    
    output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
    mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
    
    render_results = render_utils.render_video(generated_mesh, resolution=1024, ssaa=1, num_frames=8, pitch=0.25, inverse_direction=True)
    
    def combine_diagonal(color_np, normal_np):
        h, w, c = color_np.shape
        mask = np.fromfunction(lambda y, x: x > y, (h, w)).astype(bool)
        mask = np.stack([mask] * c, axis=-1)
        combined_np = np.where(mask, color_np, normal_np)
        return Image.fromarray(combined_np)

    preview_images = [combine_diagonal(c, n) for c, n in zip(render_results['color'], render_results['normal'])]
    
    trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
    trimesh_mesh.export(mesh_path)

    return preview_images, normal_image, mesh_path, mesh_path

def convert_mesh(mesh_path, export_format):
    if not mesh_path:
        return None
    temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
    mesh = trimesh.load_mesh(mesh_path)
    mesh.export(temp_file.name)
    return temp_file.name

with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown("""
        <h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1>
        <p style='text-align: center;'>
            <strong>V0.1, Introduced By 
            <a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and 
            <a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong>
        </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Tabs():
                with gr.Tab("Single Image"):
                    with gr.Row():
                        image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil")
                        normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil")
                with gr.Tab("Multiple Images"):
                    gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>")
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1)
                gr.Markdown("#### Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1)
                gr.Markdown("#### Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1)
            with gr.Group():
                with gr.Row():
                    gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary")

        with gr.Column(scale=1):
            with gr.Tabs():
                with gr.Tab("Preview"):
                    output_gallery = gr.Gallery(label="Examples", columns=4, rows=2, object_fit="contain", height="auto", show_label=False)
                with gr.Tab("3D Model"):
                    with gr.Column():
                        model_output = gr.Model3D(label="3D Model Preview (Each model is approx. 40MB)")
                    with gr.Column():
                        export_format = gr.Dropdown(
                            choices=["obj", "glb", "ply", "stl"],
                            value="glb",
                            label="File Format"
                        )
                        download_btn = gr.DownloadButton(label="Export Mesh", interactive=False)

    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt]
    )

    gen_shape_btn.click(
        generate_3d,
        inputs=[
            image_prompt, seed,
            ss_guidance_strength, ss_sampling_steps,
            slat_guidance_strength, slat_sampling_steps
        ],
        outputs=[output_gallery, normal_output, model_output, download_btn]
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_btn],
    )

    def update_download_button(mesh_path, export_format):
        if not mesh_path:
            return gr.File.update(value=None, interactive=False)
        download_path = convert_mesh(mesh_path, export_format)
        return download_path

    export_format.change(
        update_download_button,
        inputs=[model_output, export_format],
        outputs=[download_btn]
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_btn],
    )

    examples = gr.Examples(
        examples=[
            f'assets/example_image/{image}'
            for image in os.listdir("assets/example_image")
        ],
        inputs=image_prompt,
    )

    gr.Markdown("""
    **Acknowledgments**: Hi3DGen is built on the shoulders of giants. We acknowledge contributions from:
    - [Trellis 3D](https://github.com/microsoft/TRELLIS)
    - [StableNormal](https://github.com/hugoycj/StableNormal)
    """)

if __name__ == "__main__":
    # ✅ 强制使用 CPU
    pipeline = TrellisImageTo3DPipeline.from_pretrained("Stable-X/trellis-normal-v0-1")
    pipeline.to("cpu")  # <-- 强制使用 CPU

    normal_predictor = torch.hub.load(
        "hugoycj/StableNormal",
        "StableNormal_turbo",
        trust_repo=True,
        yoso_version="yoso-normal-v1-8-1"
    )
    normal_predictor.to("cpu")  # <-- 也强制使用 CPU

    demo.launch()