Spaces:
Runtime error
Runtime error
Zhenyu Li
commited on
Commit
·
abbda4e
1
Parent(s):
24b9846
update
Browse files- ui_prediction.py +347 -0
ui_prediction.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MIT License
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2022 Intelligent Systems Lab Org
|
| 4 |
+
|
| 5 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
# in the Software without restriction, including without limitation the rights
|
| 8 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
# furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
# copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
# SOFTWARE.
|
| 22 |
+
|
| 23 |
+
# File author: Zhenyu Li
|
| 24 |
+
|
| 25 |
+
import gradio as gr
|
| 26 |
+
from PIL import Image
|
| 27 |
+
import tempfile
|
| 28 |
+
import torch
|
| 29 |
+
import numpy as np
|
| 30 |
+
|
| 31 |
+
from zoedepth.utils.arg_utils import parse_unknown
|
| 32 |
+
import argparse
|
| 33 |
+
from zoedepth.models.builder import build_model
|
| 34 |
+
from zoedepth.utils.config import get_config_user
|
| 35 |
+
import matplotlib
|
| 36 |
+
import cv2
|
| 37 |
+
|
| 38 |
+
from infer_user import regular_tile_param, random_tile_param
|
| 39 |
+
from zoedepth.models.base_models.midas import Resize
|
| 40 |
+
from torchvision.transforms import Compose
|
| 41 |
+
from PIL import Image
|
| 42 |
+
from torchvision import transforms
|
| 43 |
+
import torch.nn.functional as F
|
| 44 |
+
|
| 45 |
+
from zoedepth.models.base_models.midas import Resize
|
| 46 |
+
from torchvision.transforms import Compose
|
| 47 |
+
|
| 48 |
+
import gradio as gr
|
| 49 |
+
import numpy as np
|
| 50 |
+
import trimesh
|
| 51 |
+
from zoedepth.utils.geometry import depth_to_points, create_triangles
|
| 52 |
+
from functools import partial
|
| 53 |
+
import tempfile
|
| 54 |
+
|
| 55 |
+
def depth_edges_mask(depth, occ_filter_thr):
|
| 56 |
+
"""Returns a mask of edges in the depth map.
|
| 57 |
+
Args:
|
| 58 |
+
depth: 2D numpy array of shape (H, W) with dtype float32.
|
| 59 |
+
Returns:
|
| 60 |
+
mask: 2D numpy array of shape (H, W) with dtype bool.
|
| 61 |
+
"""
|
| 62 |
+
# Compute the x and y gradients of the depth map.
|
| 63 |
+
depth_dx, depth_dy = np.gradient(depth)
|
| 64 |
+
# Compute the gradient magnitude.
|
| 65 |
+
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
|
| 66 |
+
# Compute the edge mask.
|
| 67 |
+
# mask = depth_grad > 0.05 # default in zoedepth
|
| 68 |
+
mask = depth_grad > occ_filter_thr # preserve more edges (?)
|
| 69 |
+
return mask
|
| 70 |
+
|
| 71 |
+
def load_state_dict(model, state_dict):
|
| 72 |
+
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict.
|
| 73 |
+
|
| 74 |
+
DataParallel prefixes state_dict keys with 'module.' when saving.
|
| 75 |
+
If the model is not a DataParallel model but the state_dict is, then prefixes are removed.
|
| 76 |
+
If the model is a DataParallel model but the state_dict is not, then prefixes are added.
|
| 77 |
+
"""
|
| 78 |
+
state_dict = state_dict.get('model', state_dict)
|
| 79 |
+
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.'
|
| 80 |
+
|
| 81 |
+
do_prefix = isinstance(
|
| 82 |
+
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel))
|
| 83 |
+
state = {}
|
| 84 |
+
for k, v in state_dict.items():
|
| 85 |
+
if k.startswith('module.') and not do_prefix:
|
| 86 |
+
k = k[7:]
|
| 87 |
+
|
| 88 |
+
if not k.startswith('module.') and do_prefix:
|
| 89 |
+
k = 'module.' + k
|
| 90 |
+
|
| 91 |
+
state[k] = v
|
| 92 |
+
|
| 93 |
+
model.load_state_dict(state, strict=True)
|
| 94 |
+
print("Loaded successfully")
|
| 95 |
+
return model
|
| 96 |
+
|
| 97 |
+
def load_wts(model, checkpoint_path):
|
| 98 |
+
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
| 99 |
+
return load_state_dict(model, ckpt)
|
| 100 |
+
|
| 101 |
+
def load_ckpt(model, checkpoint):
|
| 102 |
+
model = load_wts(model, checkpoint)
|
| 103 |
+
print("Loaded weights from {0}".format(checkpoint))
|
| 104 |
+
return model
|
| 105 |
+
|
| 106 |
+
def colorize(value, cmap='magma_r', vmin=None, vmax=None):
|
| 107 |
+
# normalize
|
| 108 |
+
vmin = value.min() if vmin is None else vmin
|
| 109 |
+
# vmax = value.max() if vmax is None else vmax
|
| 110 |
+
vmax = np.percentile(value, 95) if vmax is None else vmax
|
| 111 |
+
|
| 112 |
+
if vmin != vmax:
|
| 113 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
| 114 |
+
else:
|
| 115 |
+
value = value * 0.
|
| 116 |
+
|
| 117 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
| 118 |
+
value = cmapper(value, bytes=True) # ((1)xhxwx4)
|
| 119 |
+
|
| 120 |
+
value = value[:, :, :3] # bgr -> rgb
|
| 121 |
+
# rgb_value = value[..., ::-1]
|
| 122 |
+
rgb_value = value
|
| 123 |
+
|
| 124 |
+
return rgb_value
|
| 125 |
+
|
| 126 |
+
def predict_depth(model, image, mode, pn, reso, ps, device=None):
|
| 127 |
+
|
| 128 |
+
pil_image = image
|
| 129 |
+
if device is not None:
|
| 130 |
+
image = transforms.ToTensor()(pil_image).unsqueeze(0).to(device)
|
| 131 |
+
else:
|
| 132 |
+
image = transforms.ToTensor()(pil_image).unsqueeze(0).cuda()
|
| 133 |
+
|
| 134 |
+
image_height, image_width = image.shape[-2], image.shape[-1]
|
| 135 |
+
|
| 136 |
+
if reso != '':
|
| 137 |
+
image_resolution = (int(reso.split('x')[0]), int(reso.split('x')[1]))
|
| 138 |
+
else:
|
| 139 |
+
image_resolution = (2160, 3840)
|
| 140 |
+
image_hr = F.interpolate(image, image_resolution, mode='bicubic', align_corners=True)
|
| 141 |
+
preprocess = Compose([Resize(512, 384, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")])
|
| 142 |
+
image_lr = preprocess(image)
|
| 143 |
+
|
| 144 |
+
if ps != '':
|
| 145 |
+
patch_size = (int(ps.split('x')[0]), int(ps.split('x')[1]))
|
| 146 |
+
else:
|
| 147 |
+
patch_size = (int(image_resolution[0] // 4), int(image_resolution[1] // 4))
|
| 148 |
+
|
| 149 |
+
avg_depth_map = regular_tile_param(
|
| 150 |
+
model,
|
| 151 |
+
image_hr,
|
| 152 |
+
offset_x=0,
|
| 153 |
+
offset_y=0,
|
| 154 |
+
img_lr=image_lr,
|
| 155 |
+
crop_size=patch_size,
|
| 156 |
+
img_resolution=image_resolution,
|
| 157 |
+
transform=preprocess,
|
| 158 |
+
blr_mask=True)
|
| 159 |
+
|
| 160 |
+
if mode== 'P16':
|
| 161 |
+
pass
|
| 162 |
+
elif mode== 'P49':
|
| 163 |
+
regular_tile_param(
|
| 164 |
+
model,
|
| 165 |
+
image_hr,
|
| 166 |
+
offset_x=patch_size[1]//2,
|
| 167 |
+
offset_y=0,
|
| 168 |
+
img_lr=image_lr,
|
| 169 |
+
iter_pred=avg_depth_map.average_map,
|
| 170 |
+
boundary=0,
|
| 171 |
+
update=True,
|
| 172 |
+
avg_depth_map=avg_depth_map,
|
| 173 |
+
crop_size=patch_size,
|
| 174 |
+
img_resolution=image_resolution,
|
| 175 |
+
transform=preprocess,
|
| 176 |
+
blr_mask=True)
|
| 177 |
+
regular_tile_param(
|
| 178 |
+
model,
|
| 179 |
+
image_hr,
|
| 180 |
+
offset_x=0,
|
| 181 |
+
offset_y=patch_size[0]//2,
|
| 182 |
+
img_lr=image_lr,
|
| 183 |
+
iter_pred=avg_depth_map.average_map,
|
| 184 |
+
boundary=0,
|
| 185 |
+
update=True,
|
| 186 |
+
avg_depth_map=avg_depth_map,
|
| 187 |
+
crop_size=patch_size,
|
| 188 |
+
img_resolution=image_resolution,
|
| 189 |
+
transform=preprocess,
|
| 190 |
+
blr_mask=True)
|
| 191 |
+
regular_tile_param(
|
| 192 |
+
model,
|
| 193 |
+
image_hr,
|
| 194 |
+
offset_x=patch_size[1]//2,
|
| 195 |
+
offset_y=patch_size[0]//2,
|
| 196 |
+
img_lr=image_lr,
|
| 197 |
+
iter_pred=avg_depth_map.average_map,
|
| 198 |
+
boundary=0,
|
| 199 |
+
update=True,
|
| 200 |
+
avg_depth_map=avg_depth_map,
|
| 201 |
+
crop_size=patch_size,
|
| 202 |
+
img_resolution=image_resolution,
|
| 203 |
+
transform=preprocess,
|
| 204 |
+
blr_mask=True)
|
| 205 |
+
elif mode == 'R':
|
| 206 |
+
regular_tile_param(
|
| 207 |
+
model,
|
| 208 |
+
image_hr,
|
| 209 |
+
offset_x=patch_size[1]//2,
|
| 210 |
+
offset_y=0,
|
| 211 |
+
img_lr=image_lr,
|
| 212 |
+
iter_pred=avg_depth_map.average_map,
|
| 213 |
+
boundary=0,
|
| 214 |
+
update=True,
|
| 215 |
+
avg_depth_map=avg_depth_map,
|
| 216 |
+
crop_size=patch_size,
|
| 217 |
+
img_resolution=image_resolution,
|
| 218 |
+
transform=preprocess,
|
| 219 |
+
blr_mask=True)
|
| 220 |
+
regular_tile_param(
|
| 221 |
+
model,
|
| 222 |
+
image_hr,
|
| 223 |
+
offset_x=0,
|
| 224 |
+
offset_y=patch_size[0]//2,
|
| 225 |
+
img_lr=image_lr,
|
| 226 |
+
iter_pred=avg_depth_map.average_map,
|
| 227 |
+
boundary=0,
|
| 228 |
+
update=True,
|
| 229 |
+
avg_depth_map=avg_depth_map,
|
| 230 |
+
crop_size=patch_size,
|
| 231 |
+
img_resolution=image_resolution,
|
| 232 |
+
transform=preprocess,
|
| 233 |
+
blr_mask=True)
|
| 234 |
+
regular_tile_param(
|
| 235 |
+
model,
|
| 236 |
+
image_hr,
|
| 237 |
+
offset_x=patch_size[1]//2,
|
| 238 |
+
offset_y=patch_size[0]//2,
|
| 239 |
+
img_lr=image_lr,
|
| 240 |
+
iter_pred=avg_depth_map.average_map,
|
| 241 |
+
boundary=0,
|
| 242 |
+
update=True,
|
| 243 |
+
avg_depth_map=avg_depth_map,
|
| 244 |
+
crop_size=patch_size,
|
| 245 |
+
img_resolution=image_resolution,
|
| 246 |
+
transform=preprocess,
|
| 247 |
+
blr_mask=True)
|
| 248 |
+
|
| 249 |
+
for i in range(int(pn)):
|
| 250 |
+
random_tile_param(
|
| 251 |
+
model,
|
| 252 |
+
image_hr,
|
| 253 |
+
img_lr=image_lr,
|
| 254 |
+
iter_pred=avg_depth_map.average_map,
|
| 255 |
+
boundary=0,
|
| 256 |
+
update=True,
|
| 257 |
+
avg_depth_map=avg_depth_map,
|
| 258 |
+
crop_size=patch_size,
|
| 259 |
+
img_resolution=image_resolution,
|
| 260 |
+
transform=preprocess,
|
| 261 |
+
blr_mask=True)
|
| 262 |
+
|
| 263 |
+
depth = avg_depth_map.average_map.detach().cpu()
|
| 264 |
+
depth = F.interpolate(depth.unsqueeze(dim=0).unsqueeze(dim=0), (image_height, image_width), mode='bicubic', align_corners=True).squeeze().numpy()
|
| 265 |
+
|
| 266 |
+
return depth
|
| 267 |
+
|
| 268 |
+
def create_demo(model):
|
| 269 |
+
gr.Markdown("## Depth Prediction Demo")
|
| 270 |
+
|
| 271 |
+
with gr.Accordion("Advanced options", open=False):
|
| 272 |
+
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
|
| 273 |
+
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
|
| 274 |
+
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840')
|
| 275 |
+
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960')
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input')
|
| 279 |
+
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
|
| 280 |
+
raw_file = gr.File(label="16-bit raw depth, multiplier:256")
|
| 281 |
+
submit = gr.Button("Submit")
|
| 282 |
+
|
| 283 |
+
def on_submit(image, mode, pn, reso, ps):
|
| 284 |
+
depth = predict_depth(model, image, mode, pn, reso, ps)
|
| 285 |
+
colored_depth = colorize(depth, cmap='gray_r')
|
| 286 |
+
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 287 |
+
raw_depth = Image.fromarray((depth*256).astype('uint16'))
|
| 288 |
+
raw_depth.save(tmp.name)
|
| 289 |
+
return [colored_depth, tmp.name]
|
| 290 |
+
|
| 291 |
+
submit.click(on_submit, inputs=[input_image, mode[0], patch_number, resolution, patch_size], outputs=[depth_image, raw_file])
|
| 292 |
+
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_2.jpeg", "examples/example_3.jpeg"], inputs=[input_image])
|
| 293 |
+
|
| 294 |
+
def get_mesh(model, image, mode, pn, reso, ps, keep_edges, occ_filter_thr, fov):
|
| 295 |
+
depth = predict_depth(model, image, mode, pn, reso, ps)
|
| 296 |
+
|
| 297 |
+
image.thumbnail((1024,1024)) # limit the size of the input image
|
| 298 |
+
depth = F.interpolate(torch.from_numpy(depth).unsqueeze(dim=0).unsqueeze(dim=0), (image.height, image.width), mode='bicubic', align_corners=True).squeeze().numpy()
|
| 299 |
+
|
| 300 |
+
pts3d = depth_to_points(depth[None], fov=float(fov))
|
| 301 |
+
pts3d = pts3d.reshape(-1, 3)
|
| 302 |
+
|
| 303 |
+
# Create a trimesh mesh from the points
|
| 304 |
+
# Each pixel is connected to its 4 neighbors
|
| 305 |
+
# colors are the RGB values of the image
|
| 306 |
+
|
| 307 |
+
verts = pts3d.reshape(-1, 3)
|
| 308 |
+
image = np.array(image)
|
| 309 |
+
if keep_edges:
|
| 310 |
+
triangles = create_triangles(image.shape[0], image.shape[1])
|
| 311 |
+
else:
|
| 312 |
+
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth, occ_filter_thr=float(occ_filter_thr)))
|
| 313 |
+
colors = image.reshape(-1, 3)
|
| 314 |
+
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
|
| 315 |
+
|
| 316 |
+
# Save as glb
|
| 317 |
+
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
| 318 |
+
glb_path = glb_file.name
|
| 319 |
+
mesh.export(glb_path)
|
| 320 |
+
return glb_path
|
| 321 |
+
|
| 322 |
+
def create_demo_3d(model):
|
| 323 |
+
|
| 324 |
+
gr.Markdown("### Image to 3D Mesh")
|
| 325 |
+
gr.Markdown("Convert a single 2D image to a 3D mesh")
|
| 326 |
+
|
| 327 |
+
with gr.Accordion("Advanced options", open=False):
|
| 328 |
+
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'),
|
| 329 |
+
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256)
|
| 330 |
+
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width)", value='2160x3840')
|
| 331 |
+
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width)", value='540x960')
|
| 332 |
+
|
| 333 |
+
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
|
| 334 |
+
# occ_filter_thr = gr.Textbox(label="Occlusion filter threshold", info="Larger value will reserve more edges (Only useful when NOT keeping occlusion edges)", value='0.5')
|
| 335 |
+
# fov = gr.Textbox(label="FOV for inv-projection", value='55')
|
| 336 |
+
|
| 337 |
+
occ_filter_thr = gr.Slider(0.01, 5, label="Occlusion edge filter threshold", info="Larger value will reserve more occlusion edges (Only useful when NOT keeping occlusion edges)", step=0.01, value=0.2)
|
| 338 |
+
fov = gr.Slider(5, 180, label="FOV for inv-projection", step=1, value=55)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
with gr.Row():
|
| 342 |
+
input_image = gr.Image(label="Input Image", type='pil')
|
| 343 |
+
result = gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
|
| 344 |
+
|
| 345 |
+
submit = gr.Button("Submit")
|
| 346 |
+
submit.click(partial(get_mesh, model), inputs=[input_image, mode[0], patch_number, resolution, patch_size, checkbox, occ_filter_thr, fov], outputs=[result])
|
| 347 |
+
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_4.jpeg", "examples/example_3.jpeg"], inputs=[input_image])
|