Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Callable, Dict, List, Optional, Union | |
| import torch | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.models import AutoencoderKLWan | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.video_processor import VideoProcessor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
| import scipy | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from transformer_minimax_remover import Transformer3DModel | |
| from einops import rearrange | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| class Minimax_Remover_Pipeline(DiffusionPipeline): | |
| model_cpu_offload_seq = "transformer->vae" | |
| _callback_tensor_inputs = ["latents"] | |
| def __init__( | |
| self, | |
| transformer: Transformer3DModel, | |
| vae: AutoencoderKLWan, | |
| scheduler: FlowMatchEulerDiscreteScheduler | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4 | |
| self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8 | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | |
| def prepare_latents( | |
| self, | |
| batch_size: int, | |
| num_channels_latents: 16, | |
| height: int = 720, | |
| width: int = 1280, | |
| num_latent_frames: int = 21, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[torch.device] = None, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| num_latent_frames, | |
| int(height) // self.vae_scale_factor_spatial, | |
| int(width) // self.vae_scale_factor_spatial, | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def expand_masks(self, masks, iterations): | |
| masks = masks.cpu().detach().numpy() | |
| # numpy array, masks [0,1], f h w c | |
| masks2 = [] | |
| for i in range(len(masks)): | |
| mask = masks[i] | |
| mask = mask > 0 | |
| mask = scipy.ndimage.binary_dilation(mask, iterations=iterations) | |
| masks2.append(mask) | |
| masks = np.array(masks2).astype(np.float32) | |
| masks = torch.from_numpy(masks) | |
| masks = masks.repeat(1,1,1,3) | |
| masks = rearrange(masks, "f h w c -> c f h w") | |
| masks = masks[None,...] | |
| return masks | |
| def resize(self, images, w, h): | |
| bsz,_,_,_,_ = images.shape | |
| images = rearrange(images, "b c f w h -> (b f) c w h") | |
| images = F.interpolate(images, (w,h), mode='bilinear') | |
| images = rearrange(images, "(b f) c w h -> b c f w h", b=bsz) | |
| return images | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| height: int = 720, | |
| width: int = 1280, | |
| num_frames: int = 81, | |
| num_inference_steps: int = 50, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| images: Optional[torch.Tensor] = None, | |
| masks: Optional[torch.Tensor] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "np", | |
| iterations: int = 16 | |
| ): | |
| self._current_timestep = None | |
| self._interrupt = False | |
| device = self._execution_device | |
| batch_size = 1 | |
| transformer_dtype = torch.float16 | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = 16 | |
| num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_latent_frames, | |
| torch.float16, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| masks = self.expand_masks(masks, iterations) | |
| masks = self.resize(masks, height, width).to("cuda:0").half() | |
| masks[masks>0] = 1 | |
| images = rearrange(images, "f h w c -> c f h w") | |
| images = self.resize(images[None,...], height, width).to("cuda:0").half() | |
| masked_images = images * (1-masks) | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean) | |
| .view(1, self.vae.config.z_dim, 1, 1, 1) | |
| .to(self.vae.device, torch.float16) | |
| ) | |
| latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
| self.vae.device, torch.float16 | |
| ) | |
| with torch.no_grad(): | |
| masked_latents = self.vae.encode(masked_images.half()).latent_dist.mode() | |
| masks_latents = self.vae.encode(2*masks.half()-1.0).latent_dist.mode() | |
| masked_latents = (masked_latents - latents_mean) * latents_std | |
| masks_latents = (masks_latents - latents_mean) * latents_std | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = latents.to(transformer_dtype) | |
| #print("latent_model_input, masked_latents, masks_latents", latent_model_input.shape, masked_latents.shape, masks_latents.shape) | |
| latent_model_input = torch.cat([latent_model_input, masked_latents, masks_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input.half(), | |
| timestep=timestep | |
| )[0] | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| progress_bar.update() | |
| latents = latents.half() / latents_std + latents_mean | |
| video = self.vae.decode(latents, return_dict=False)[0] | |
| video = self.video_processor.postprocess_video(video, output_type=output_type) | |
| return WanPipelineOutput(frames=video) | |