Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -59,7 +59,7 @@ H = W
|
|
59 |
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
|
61 |
def get_pipe_image_and_video_predictor():
|
62 |
-
device="
|
63 |
vae = AutoencoderKLWan.from_pretrained("./model/vae", torch_dtype=torch.float16)
|
64 |
transformer = Transformer3DModel.from_pretrained("./model/transformer", torch_dtype=torch.float16)
|
65 |
scheduler = UniPCMultistepScheduler.from_pretrained("./model/scheduler")
|
@@ -195,6 +195,8 @@ def inference_and_return_video(dilation_iterations, num_inference_steps, video_s
|
|
195 |
print(mask_tensor.shape)
|
196 |
mask_tensor = mask_tensor[:,:,:]
|
197 |
|
|
|
|
|
198 |
if mask_tensor.shape[1] < mask_tensor.shape[2]:
|
199 |
height = 480
|
200 |
width = 832
|
|
|
59 |
#device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
|
61 |
def get_pipe_image_and_video_predictor():
|
62 |
+
device="cuda"
|
63 |
vae = AutoencoderKLWan.from_pretrained("./model/vae", torch_dtype=torch.float16)
|
64 |
transformer = Transformer3DModel.from_pretrained("./model/transformer", torch_dtype=torch.float16)
|
65 |
scheduler = UniPCMultistepScheduler.from_pretrained("./model/scheduler")
|
|
|
195 |
print(mask_tensor.shape)
|
196 |
mask_tensor = mask_tensor[:,:,:]
|
197 |
|
198 |
+
pipe.to("cuda")
|
199 |
+
|
200 |
if mask_tensor.shape[1] < mask_tensor.shape[2]:
|
201 |
height = 480
|
202 |
width = 832
|