PengWeixuanSZU commited on
Commit
47341d5
·
verified ·
1 Parent(s): aeeda28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -180,14 +180,14 @@ def preprocess_for_removal(images, masks):
180
  return torch.from_numpy(arr_images).half().to(device), torch.from_numpy(arr_masks).half().to(device)
181
 
182
  @spaces.GPU(duration=200)
183
- def inference_and_return_video(dilation_iterations, num_inference_steps, video_state=None):
184
  if video_state["origin_images"] is None or video_state["masks"] is None:
185
  return None
186
  images = video_state["origin_images"]
187
  masks = video_state["masks"]
188
 
189
- #images = np.array(images)
190
- #masks = np.array(masks)
191
  print(f"line 191 images shape:{images.shape},masks shape:{masks.shape}")
192
  #line 191 images shape:(1, 1024, 1820, 3),masks shape:(1, 1024, 1820), which should be (16, 1024, 1820, 3) and (16, 1024, 1820, 3)
193
  img_tensor, mask_tensor = preprocess_for_removal(images, masks)
@@ -242,7 +242,7 @@ def track_video(n_frames, video_state):
242
  W_ = int(H_ * images[0].shape[1] / images[0].shape[0])
243
 
244
  images = [cv2.resize(img, (W_, H_)) for img in images]
245
- video_state["origin_images"] = np.array(images)##images
246
  images = np.array(images)
247
  inference_state = video_predictor.init_state(images=images/255, device=device)
248
  video_state["inference_state"] = inference_state
@@ -279,7 +279,7 @@ def track_video(n_frames, video_state):
279
  painted = np.uint8(np.clip(painted * 255, 0, 255))
280
  output_frames.append(painted)
281
  print(f"line 281 len(output_frames)={len(output_frames)}, painted shape:{painted.shape}")
282
- video_state["masks"] =np.array( mask_frames)
283
  print(f'line 283 len video_state["masks"]:{len(video_state["masks"])}')
284
  print(f'line 284 video_state["masks"][0].shape:{video_state["masks"][0].shape}')
285
  video_file = f"/tmp/{time.time()}-{random.random()}-tracked_output.mp4"
 
180
  return torch.from_numpy(arr_images).half().to(device), torch.from_numpy(arr_masks).half().to(device)
181
 
182
  @spaces.GPU(duration=200)
183
+ def inference_and_return_video(dilation_iterations, num_inference_steps, video_state):
184
  if video_state["origin_images"] is None or video_state["masks"] is None:
185
  return None
186
  images = video_state["origin_images"]
187
  masks = video_state["masks"]
188
 
189
+ images = np.array(images)
190
+ masks = np.array(masks)
191
  print(f"line 191 images shape:{images.shape},masks shape:{masks.shape}")
192
  #line 191 images shape:(1, 1024, 1820, 3),masks shape:(1, 1024, 1820), which should be (16, 1024, 1820, 3) and (16, 1024, 1820, 3)
193
  img_tensor, mask_tensor = preprocess_for_removal(images, masks)
 
242
  W_ = int(H_ * images[0].shape[1] / images[0].shape[0])
243
 
244
  images = [cv2.resize(img, (W_, H_)) for img in images]
245
+ video_state["origin_images"] = images
246
  images = np.array(images)
247
  inference_state = video_predictor.init_state(images=images/255, device=device)
248
  video_state["inference_state"] = inference_state
 
279
  painted = np.uint8(np.clip(painted * 255, 0, 255))
280
  output_frames.append(painted)
281
  print(f"line 281 len(output_frames)={len(output_frames)}, painted shape:{painted.shape}")
282
+ video_state["masks"] =mask_frames
283
  print(f'line 283 len video_state["masks"]:{len(video_state["masks"])}')
284
  print(f'line 284 video_state["masks"][0].shape:{video_state["masks"][0].shape}')
285
  video_file = f"/tmp/{time.time()}-{random.random()}-tracked_output.mp4"