PengWeixuanSZU commited on
Commit
99f32bd
·
verified ·
1 Parent(s): 6fddb71

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -11
README.md CHANGED
@@ -1,14 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: MiniMax Remover
3
- emoji:
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.34.1
8
- app_file: app.py
9
- pinned: false
10
- license: cc-by-nc-2.0
11
- short_description: MiniMax-Remover is a fast and effective video object remover
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
+ <h1 align="center">
2
+ <span style="color:#2196f3;"><b>MiniMax</b></span><span style="color:#f06292;"><b>-Remover</b></span>: Taming Bad Noise Helps Video Object Removal
3
+ </h1>
4
+
5
+ <p align="center">
6
+ Bojia Zi<sup>*</sup>,
7
+ Weixuan Peng<sup>*</sup>,
8
+ Xianbiao Qi<sup>†</sup>,
9
+ Jianan Wang, Shihao Zhao, Rong Xiao, Kam-Fai Wong<br>
10
+ <sup>*</sup> Equal contribution. <sup>†</sup> Corresponding author.
11
+ </p>
12
+
13
+ <p align="center">
14
+ <a href="https://huggingface.co/zibojia/minimax-remover"><img alt="Huggingface Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-Model-brightgreen"></a>
15
+ <a href="https://github.com/zibojia/MiniMax-Remover"><img alt="Github" src="https://img.shields.io/badge/MiniMaxRemover-github-black"></a>
16
+ <a href="https://huggingface.co/spaces/zibojia/MiniMaxRemover"><img alt="Huggingface Space" src="https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-Space-1e90ff"></a>
17
+ <a href="https://arxiv.org/abs/2505.24873"><img alt="arXiv" src="https://img.shields.io/badge/MiniMaxRemover-arXiv-b31b1b"></a>
18
+ <a href="https://www.youtube.com/watch?v=KaU5yNl6CTc"><img alt="YouTube" src="https://img.shields.io/badge/Youtube-video-ff0000"></a>
19
+ <a href="https://minimax-remover.github.io"><img alt="Demo Page" src="https://img.shields.io/badge/Website-Demo%20Page-yellow"></a>
20
+ </p>
21
+
22
+ ---
23
+
24
+ ## 🚀 Overview
25
+
26
+ **MiniMax-Remover** is a fast and effective video object remover based on minimax optimization. It operates in two stages: the first stage trains a remover using a simplified DiT architecture, while the second stage distills a robust remover with CFG removal and fewer inference steps.
27
+
28
+ ---
29
+
30
+ ## ✨ Features:
31
+
32
+ * **Fast:** Requires only 6 inference steps and does not use CFG, making it highly efficient.
33
+
34
+ * **Effective:** Seamlessly removes objects from videos and generates high-quality visual content.
35
+
36
+ * **Robust:** Maintains robustness by preventing the regeneration of undesired objects or artifacts within the masked region, even under varying noise conditions.
37
+
38
+ ---
39
+
40
+ ## 🛠️ Installation
41
+
42
+ All dependencies are listed in `requirements.txt`.
43
+
44
+ ```bash
45
+ pip install -r requirements.txt
46
+ ```
47
+
48
  ---
49
+
50
+ ## 🏃‍♂️ Gradio Demo
51
+
52
+ <p align="center">
53
+ <a href="https://youtu.be/1V7Ov4vmnBc" target="_blank">
54
+ <img src="./imgs/gradio_demo.gif" alt="firstpage" style="width:80%;" />
55
+ </a>
56
+ </p>
57
+
58
+ You can use this gradio demo to remove objects. Note that you don't need to compile the sam2.
59
+ ```bash
60
+ cd gradio_demo
61
+ python3 test.py
62
+ ```
63
+
64
+ ---
65
+
66
+ ## 📂 Download
67
+
68
+ ```shell
69
+ huggingface-cli download zibojia/minimax-remover --include vae transformer scheduler --local-dir .
70
+ ```
71
+
72
+ ---
73
+
74
+ ## ⚡ Quick Start
75
+
76
+ ### Minimal Example
77
+
78
+ ```python
79
+ import torch
80
+ from diffusers.utils import export_to_video
81
+ from decord import VideoReader
82
+ from diffusers.models import AutoencoderKLWan
83
+ from transformer_minimax_remover import Transformer3DModel
84
+ from diffusers.schedulers import UniPCMultistepScheduler
85
+ from pipeline_minimax_remover import Minimax_Remover_Pipeline
86
+
87
+ random_seed = 42
88
+ video_length = 81
89
+ device = torch.device("cuda:0")
90
+
91
+ # Load model weights separately
92
+ vae = AutoencoderKLWan.from_pretrained("./vae", torch_dtype=torch.float16)
93
+ transformer = Transformer3DModel.from_pretrained("./transformer", torch_dtype=torch.float16)
94
+ scheduler = UniPCMultistepScheduler.from_pretrained("./scheduler")
95
+
96
+ images = # images in range [-1, 1]
97
+ masks = # masks in range [0, 1]
98
+
99
+ # Initialize the pipeline (pass the loaded weights as objects)
100
+ pipe = Minimax_Remover_Pipeline(vae=vae, transformer=transformer, \
101
+ scheduler=scheduler, torch_dtype=torch.float16
102
+ ).to(device)
103
+
104
+ result = pipe(images=images, masks=masks, num_frames=video_length, height=480, width=832, \
105
+ num_inference_steps=12, generator=torch.Generator(device=device).manual_seed(random_seed), iterations=6 \
106
+ ).frames[0]
107
+ export_to_video(result, "./output.mp4")
108
+ ```
109
  ---
110
 
111
+ ## 📧 Contact
112
+
113
+ Feel free to send an email to [[email protected]](mailto:[email protected]) if you have any questions or suggestions.