File size: 5,066 Bytes
7c27268
 
 
 
 
 
7a6bafa
 
7c27268
 
 
 
 
2b8834a
050c6f5
7c27268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d2686
 
 
 
de5bd2a
02d2686
de5bd2a
48d0430
7c27268
c5f38fa
7a6bafa
82fa24a
7a6bafa
050c6f5
7a6bafa
050c6f5
 
 
bf3f489
7c27268
 
6ceac94
 
7c27268
 
 
050c6f5
 
7c27268
 
 
6ceac94
7c27268
 
 
 
 
 
 
 
 
 
 
2f78644
 
 
0578343
2f78644
7c27268
2f78644
7c27268
2f78644
7c27268
2f78644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c27268
 
 
187c6c8
7c27268
 
 
 
 
 
 
 
 
 
45a5139
7c27268
45a5139
7c27268
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import mmap
import json
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import pipeline
from depth_anything_v2.dpt import DepthAnythingV2

css = """
#img-display-container {
    max-height: 100vh;
}
#img-display-input {
    max-height: 80vh;
}
#img-display-output {
    max-height: 80vh;
}
#download {
    height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", filename="model.safetensors", repo_type="model")

# Convert to PyTorch tensor
#state_dict = torch.load(filepath, map_location="cpu", weights_only=True)
#state_dict = load_file(filepath)

#model.load_state_dict(state_dict)
#model = model.to(DEVICE).eval()

pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", device=DEVICE )

title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

@spaces.GPU
def predict_depth(image):
    #return model.infer_image(image)
    return pipe(image)["depth"]

with gr.Blocks(css=css) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Depth Prediction demo")

    with gr.Row():
        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
        depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
    submit = gr.Button(value="Compute Depth")
    gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
    raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)

    cmap = matplotlib.colormaps.get_cmap('Spectral_r')

def on_submit(image):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    original_image = image.copy()

    h, w = image.size  # For PIL images, use .size instead of .shape

    depth = predict_depth(image)

    # Debugging info
    print("Type of depth:", type(depth))
    print("Shape of depth:", depth.shape if isinstance(depth, np.ndarray) else "N/A")

    if isinstance(depth, np.ndarray):
        print("Data type of depth:", depth.dtype)

    # Ensure depth is a NumPy array and has the correct shape and dtype
    if not isinstance(depth, np.ndarray):
        raise TypeError("Expected a NumPy array for depth, but got {}".format(type(depth)))

    # Adjust the depth array if needed
    if depth.ndim == 2:
        # 2D array: expected for grayscale depth maps
        depth = depth.astype('uint16')  # Convert to a suitable type
    elif depth.ndim == 3 and depth.shape[2] == 1:
        # 3D array with a single channel (e.g., shape (H, W, 1))
        depth = depth[:, :, 0].astype('uint16')
    else:
        raise ValueError("Unsupported depth array shape: {}".format(depth.shape))

    # Now convert to a PIL Image
    raw_depth = Image.fromarray(depth)        tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        raw_depth.save(tmp_raw_depth.name)

        depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
        depth = depth.astype(np.uint8)
        colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)

        gray_depth = Image.fromarray(depth)
        tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
        gray_depth.save(tmp_gray_depth.name)

        return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]

    submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])

    example_files = os.listdir('assets/examples')
    example_files.sort()
    example_files = [os.path.join('assets/examples', filename) for filename in example_files]
    examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)


if __name__ == '__main__':
    demo.queue().launch(share=True)