Spaces:
Runtime error
Runtime error
File size: 5,066 Bytes
7c27268 7a6bafa 7c27268 2b8834a 050c6f5 7c27268 02d2686 de5bd2a 02d2686 de5bd2a 48d0430 7c27268 c5f38fa 7a6bafa 82fa24a 7a6bafa 050c6f5 7a6bafa 050c6f5 bf3f489 7c27268 6ceac94 7c27268 050c6f5 7c27268 6ceac94 7c27268 2f78644 0578343 2f78644 7c27268 2f78644 7c27268 2f78644 7c27268 2f78644 7c27268 187c6c8 7c27268 45a5139 7c27268 45a5139 7c27268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import mmap
import json
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import pipeline
from depth_anything_v2.dpt import DepthAnythingV2
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
encoder = 'vitl'
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", filename="model.safetensors", repo_type="model")
# Convert to PyTorch tensor
#state_dict = torch.load(filepath, map_location="cpu", weights_only=True)
#state_dict = load_file(filepath)
#model.load_state_dict(state_dict)
#model = model.to(DEVICE).eval()
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", device=DEVICE )
title = "# Depth Anything V2"
description = """Official demo for **Depth Anything V2**.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
@spaces.GPU
def predict_depth(image):
#return model.infer_image(image)
return pipe(image)["depth"]
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
submit = gr.Button(value="Compute Depth")
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
original_image = image.copy()
h, w = image.size # For PIL images, use .size instead of .shape
depth = predict_depth(image)
# Debugging info
print("Type of depth:", type(depth))
print("Shape of depth:", depth.shape if isinstance(depth, np.ndarray) else "N/A")
if isinstance(depth, np.ndarray):
print("Data type of depth:", depth.dtype)
# Ensure depth is a NumPy array and has the correct shape and dtype
if not isinstance(depth, np.ndarray):
raise TypeError("Expected a NumPy array for depth, but got {}".format(type(depth)))
# Adjust the depth array if needed
if depth.ndim == 2:
# 2D array: expected for grayscale depth maps
depth = depth.astype('uint16') # Convert to a suitable type
elif depth.ndim == 3 and depth.shape[2] == 1:
# 3D array with a single channel (e.g., shape (H, W, 1))
depth = depth[:, :, 0].astype('uint16')
else:
raise ValueError("Unsupported depth array shape: {}".format(depth.shape))
# Now convert to a PIL Image
raw_depth = Image.fromarray(depth) tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp_raw_depth.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
gray_depth = Image.fromarray(depth)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
gray_depth.save(tmp_gray_depth.name)
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)
|