File size: 5,783 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
_base_ = ["../_base_/default_runtime.py"]

# misc custom setting
batch_size = 12  # bs: total bs in all gpus
num_worker = 12
mix_prob = 0
empty_cache = False
enable_amp = True
evaluate = True

class_names = [
    "wall",
    "floor",
    "cabinet",
    "bed",
    "chair",
    "sofa",
    "table",
    "door",
    "window",
    "bookshelf",
    "picture",
    "counter",
    "desk",
    "curtain",
    "refridgerator",
    "shower curtain",
    "toilet",
    "sink",
    "bathtub",
    "otherfurniture",
]
num_classes = 20
segment_ignore_index = (-1, 0, 1)

# model settings
model = dict(
    type="PG-v1m1",
    backbone=dict(
        type="SpUNet-v1m1",
        in_channels=6,
        num_classes=0,
        channels=(32, 64, 128, 256, 256, 128, 96, 96),
        layers=(2, 3, 4, 6, 2, 2, 2, 2),
    ),
    backbone_out_channels=96,
    semantic_num_classes=num_classes,
    semantic_ignore_index=-1,
    segment_ignore_index=segment_ignore_index,
    instance_ignore_index=-1,
    cluster_thresh=1.5,
    cluster_closed_points=300,
    cluster_propose_points=100,
    cluster_min_points=50,
)

# scheduler settings
epoch = 800
optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type="PolyLR")

# dataset settings
dataset_type = "ScanNetDataset"
data_root = "data/scannet"

data = dict(
    num_classes=num_classes,
    ignore_index=-1,
    names=class_names,
    train=dict(
        type=dataset_type,
        split="train",
        data_root=data_root,
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(
                type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5
            ),
            # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
            dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
            dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
            dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
            dict(type="RandomScale", scale=[0.9, 1.1]),
            # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
            dict(type="RandomFlip", p=0.5),
            dict(type="RandomJitter", sigma=0.005, clip=0.02),
            dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
            dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
            dict(type="ChromaticTranslation", p=0.95, ratio=0.1),
            dict(type="ChromaticJitter", p=0.95, std=0.05),
            # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
            # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
            dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="train",
                return_grid_coord=True,
                keys=("coord", "color", "normal", "segment", "instance"),
            ),
            dict(type="SphereCrop", sample_rate=0.8, mode="random"),
            dict(type="NormalizeColor"),
            dict(
                type="InstanceParser",
                segment_ignore_index=segment_ignore_index,
                instance_ignore_index=-1,
            ),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=(
                    "coord",
                    "grid_coord",
                    "segment",
                    "instance",
                    "instance_centroid",
                    "bbox",
                ),
                feat_keys=("color", "normal"),
            ),
        ],
        test_mode=False,
    ),
    val=dict(
        type=dataset_type,
        split="val",
        data_root=data_root,
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(
                type="Copy",
                keys_dict={
                    "coord": "origin_coord",
                    "segment": "origin_segment",
                    "instance": "origin_instance",
                },
            ),
            dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="train",
                return_grid_coord=True,
                keys=("coord", "color", "normal", "segment", "instance"),
            ),
            # dict(type="SphereCrop", point_max=1000000, mode='center'),
            dict(type="CenterShift", apply_z=False),
            dict(type="NormalizeColor"),
            dict(
                type="InstanceParser",
                segment_ignore_index=segment_ignore_index,
                instance_ignore_index=-1,
            ),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=(
                    "coord",
                    "grid_coord",
                    "segment",
                    "instance",
                    "origin_coord",
                    "origin_segment",
                    "origin_instance",
                    "instance_centroid",
                    "bbox",
                ),
                feat_keys=("color", "normal"),
                offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"),
            ),
        ],
        test_mode=False,
    ),
    test=dict(),  # currently not available
)

hooks = [
    dict(type="CheckpointLoader", keywords="module.", replacement="module."),
    dict(type="IterationTimer", warmup_iter=2),
    dict(type="InformationWriter"),
    dict(
        type="InsSegEvaluator",
        segment_ignore_index=segment_ignore_index,
        instance_ignore_index=-1,
    ),
    dict(type="CheckpointSaver", save_freq=None),
]