File size: 19,623 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
_base_ = [
    "../_base_/default_runtime.py",
    "../_base_/dataset/scannetpp.py",
]

# misc custom setting
batch_size = 24  # bs: total bs in all gpus
num_worker = 48
mix_prob = 0.8
empty_cache = False
enable_amp = True
find_unused_parameters = True

# trainer
train = dict(
    type="MultiDatasetTrainer",
)

# model settings
model = dict(
    type="PPT-v1m2",
    backbone=dict(
        type="PT-v3m1",
        in_channels=6,
        order=("z", "z-trans", "hilbert", "hilbert-trans"),
        stride=(2, 2, 2, 2),
        enc_depths=(3, 3, 3, 6, 3),
        enc_channels=(48, 96, 192, 384, 512),
        enc_num_head=(3, 6, 12, 24, 32),
        enc_patch_size=(1024, 1024, 1024, 1024, 1024),
        dec_depths=(3, 3, 3, 3),
        dec_channels=(64, 96, 192, 384),
        dec_num_head=(4, 6, 12, 24),
        dec_patch_size=(1024, 1024, 1024, 1024),
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        drop_path=0.3,
        shuffle_orders=True,
        pre_norm=True,
        enable_rpe=False,
        enable_flash=True,
        upcast_attention=False,
        upcast_softmax=False,
        cls_mode=False,
        pdnorm_bn=True,
        pdnorm_ln=True,
        pdnorm_decouple=True,
        pdnorm_adaptive=False,
        pdnorm_affine=True,
        pdnorm_conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D"),
    ),
    criteria=[
        dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
        dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
    ],
    backbone_out_channels=64,
    context_channels=256,
    conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D"),
    num_classes=(200, 100, 13, 25),
)

# scheduler settings
epoch = 100
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05)
scheduler = dict(
    type="OneCycleLR",
    max_lr=[0.005, 0.0005],
    pct_start=0.05,
    anneal_strategy="cos",
    div_factor=10.0,
    final_div_factor=1000.0,
)
param_dicts = [dict(keyword="block", lr=0.0005)]

# dataset settings
data = dict(
    num_classes=100,
    ignore_index=-1,
    train=dict(
        type="ConcatDataset",
        datasets=[
            # Structured3D
            dict(
                type="Structured3DDataset",
                split=["train", "val", "test"],
                data_root="data/structured3d",
                transform=[
                    dict(type="CenterShift", apply_z=True),
                    dict(
                        type="RandomDropout",
                        dropout_ratio=0.2,
                        dropout_application_ratio=0.2,
                    ),
                    # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
                    dict(
                        type="RandomRotate",
                        angle=[-1, 1],
                        axis="z",
                        center=[0, 0, 0],
                        p=0.5,
                    ),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
                    dict(type="RandomScale", scale=[0.9, 1.1]),
                    # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
                    dict(type="RandomFlip", p=0.5),
                    dict(type="RandomJitter", sigma=0.005, clip=0.02),
                    dict(
                        type="ElasticDistortion",
                        distortion_params=[[0.2, 0.4], [0.8, 1.6]],
                    ),
                    dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
                    dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
                    dict(type="ChromaticJitter", p=0.95, std=0.05),
                    # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
                    # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
                    dict(
                        type="GridSample",
                        grid_size=0.02,
                        hash_type="fnv",
                        mode="train",
                        return_grid_coord=True,
                    ),
                    dict(type="SphereCrop", sample_rate=0.8, mode="random"),
                    dict(type="SphereCrop", point_max=204800, mode="random"),
                    dict(type="CenterShift", apply_z=False),
                    dict(type="NormalizeColor"),
                    # dict(type="ShufflePoint"),
                    dict(type="Add", keys_dict={"condition": "Structured3D"}),
                    dict(type="ToTensor"),
                    dict(
                        type="Collect",
                        keys=("coord", "grid_coord", "segment", "condition"),
                        feat_keys=("color", "normal"),
                    ),
                ],
                test_mode=False,
                loop=2,  # sampling weight
            ),
            # ScanNet
            dict(
                type="ScanNet200Dataset",
                split=["train", "val"],
                data_root="data/scannet",
                transform=[
                    dict(type="CenterShift", apply_z=True),
                    dict(
                        type="RandomDropout",
                        dropout_ratio=0.2,
                        dropout_application_ratio=0.2,
                    ),
                    # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
                    dict(
                        type="RandomRotate",
                        angle=[-1, 1],
                        axis="z",
                        center=[0, 0, 0],
                        p=0.5,
                    ),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
                    dict(type="RandomScale", scale=[0.9, 1.1]),
                    # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
                    dict(type="RandomFlip", p=0.5),
                    dict(type="RandomJitter", sigma=0.005, clip=0.02),
                    dict(
                        type="ElasticDistortion",
                        distortion_params=[[0.2, 0.4], [0.8, 1.6]],
                    ),
                    dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
                    dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
                    dict(type="ChromaticJitter", p=0.95, std=0.05),
                    # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
                    # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
                    dict(
                        type="GridSample",
                        grid_size=0.02,
                        hash_type="fnv",
                        mode="train",
                        return_grid_coord=True,
                    ),
                    dict(type="SphereCrop", point_max=204800, mode="random"),
                    dict(type="CenterShift", apply_z=False),
                    dict(type="NormalizeColor"),
                    dict(type="ShufflePoint"),
                    dict(type="Add", keys_dict={"condition": "ScanNet"}),
                    dict(type="ToTensor"),
                    dict(
                        type="Collect",
                        keys=("coord", "grid_coord", "segment", "condition"),
                        feat_keys=("color", "normal"),
                    ),
                ],
                test_mode=False,
                loop=1,  # sampling weight
            ),
            # S3DIS
            # dict(
            #     type="S3DISDataset",
            #     split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"),
            #     data_root="data/s3dis",
            #     transform=[
            #         dict(type="CenterShift", apply_z=True),
            #         dict(
            #             type="RandomDropout",
            #             dropout_ratio=0.2,
            #             dropout_application_ratio=0.2,
            #         ),
            #         # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
            #         dict(
            #             type="RandomRotate",
            #             angle=[-1, 1],
            #             axis="z",
            #             center=[0, 0, 0],
            #             p=0.5,
            #         ),
            #         dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
            #         dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
            #         dict(type="RandomScale", scale=[0.9, 1.1]),
            #         # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
            #         dict(type="RandomFlip", p=0.5),
            #         dict(type="RandomJitter", sigma=0.005, clip=0.02),
            #         dict(
            #             type="ElasticDistortion",
            #             distortion_params=[[0.2, 0.4], [0.8, 1.6]],
            #         ),
            #         dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
            #         dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
            #         dict(type="ChromaticJitter", p=0.95, std=0.05),
            #         # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
            #         # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
            #         dict(
            #             type="GridSample",
            #             grid_size=0.02,
            #             hash_type="fnv",
            #             mode="train",
            #             return_grid_coord=True,
            #         ),
            #         dict(type="SphereCrop", sample_rate=0.6, mode="random"),
            #         dict(type="SphereCrop", point_max=204800, mode="random"),
            #         dict(type="CenterShift", apply_z=False),
            #         dict(type="NormalizeColor"),
            #         dict(type="ShufflePoint"),
            #         dict(type="Add", keys_dict={"condition": "S3DIS"}),
            #         dict(type="ToTensor"),
            #         dict(
            #             type="Collect",
            #             keys=("coord", "grid_coord", "segment", "condition"),
            #             feat_keys=("color", "normal"),
            #         ),
            #     ],
            #     test_mode=False,
            #     loop=1,  # sampling weight
            # ),
            dict(
                type="ScanNetPPDataset",
                split="train_grid1mm_chunk6x6_stride3x3",
                data_root="data/scannetpp",
                transform=[
                    dict(type="CenterShift", apply_z=True),
                    dict(
                        type="RandomDropout",
                        dropout_ratio=0.2,
                        dropout_application_ratio=0.2,
                    ),
                    # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
                    dict(
                        type="RandomRotate",
                        angle=[-1, 1],
                        axis="z",
                        center=[0, 0, 0],
                        p=0.5,
                    ),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
                    dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
                    dict(type="RandomScale", scale=[0.9, 1.1]),
                    # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
                    dict(type="RandomFlip", p=0.5),
                    dict(type="RandomJitter", sigma=0.005, clip=0.02),
                    dict(
                        type="ElasticDistortion",
                        distortion_params=[[0.2, 0.4], [0.8, 1.6]],
                    ),
                    dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
                    dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
                    dict(type="ChromaticJitter", p=0.95, std=0.05),
                    # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
                    # dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
                    dict(
                        type="GridSample",
                        grid_size=0.02,
                        hash_type="fnv",
                        mode="train",
                        return_grid_coord=True,
                    ),
                    dict(type="SphereCrop", point_max=204800, mode="random"),
                    dict(type="CenterShift", apply_z=False),
                    dict(type="NormalizeColor"),
                    # dict(type="ShufflePoint"),
                    dict(type="Add", keys_dict={"condition": "ScanNet++"}),
                    dict(type="ToTensor"),
                    dict(
                        type="Collect",
                        keys=("coord", "grid_coord", "segment", "condition"),
                        feat_keys=("color", "normal"),
                    ),
                ],
                test_mode=False,
            ),
        ],
    ),
    val=dict(
        type="ScanNetPPDataset",
        split="val",
        data_root="data/scannetpp",
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="train",
                return_grid_coord=True,
            ),
            dict(type="CenterShift", apply_z=False),
            dict(type="NormalizeColor"),
            dict(type="ToTensor"),
            dict(type="Add", keys_dict={"condition": "ScanNet++"}),
            dict(
                type="Collect",
                keys=("coord", "grid_coord", "segment", "condition"),
                feat_keys=("color", "normal"),
            ),
        ],
        test_mode=False,
    ),
    test=dict(
        type="ScanNetPPDataset",
        split="val",
        data_root="data/scannetpp",
        transform=[
            dict(type="CenterShift", apply_z=True),
            dict(type="NormalizeColor"),
            dict(type="Copy", keys_dict={"segment": "origin_segment"}),
            dict(
                type="GridSample",
                grid_size=0.01,
                hash_type="fnv",
                mode="train",
                keys=("coord", "color", "normal", "segment"),
                return_inverse=True,
            ),
        ],
        test_mode=True,
        test_cfg=dict(
            voxelize=dict(
                type="GridSample",
                grid_size=0.02,
                hash_type="fnv",
                mode="test",
                keys=("coord", "color", "normal"),
                return_grid_coord=True,
            ),
            crop=None,
            post_transform=[
                dict(type="CenterShift", apply_z=False),
                dict(type="Add", keys_dict={"condition": "ScanNet++"}),
                dict(type="ToTensor"),
                dict(
                    type="Collect",
                    keys=("coord", "grid_coord", "index", "condition"),
                    feat_keys=("color", "normal"),
                ),
            ],
            aug_transform=[
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[0.95, 0.95]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    ),
                    dict(type="RandomScale", scale=[1.05, 1.05]),
                ],
                [dict(type="RandomFlip", p=1)],
            ],
        ),
    ),
)