File size: 6,696 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
_base_ = ["../_base_/default_runtime.py"]

# misc custom setting
batch_size = 12  # bs: total bs in all gpus
mix_prob = 0.8
empty_cache = False
enable_amp = True

# model settings
model = dict(
    type="DefaultSegmentor",
    backbone=dict(
        type="SpUNet-v1m1",
        in_channels=4,
        num_classes=22,
        channels=(32, 64, 128, 256, 256, 128, 96, 96),
        layers=(2, 3, 4, 6, 2, 2, 2, 2),
    ),
    criteria=[
        dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
        dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
    ],
)

# scheduler settings
epoch = 50
eval_epoch = 50
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005)
scheduler = dict(
    type="OneCycleLR",
    max_lr=optimizer["lr"],
    pct_start=0.04,
    anneal_strategy="cos",
    div_factor=10.0,
    final_div_factor=100.0,
)

# dataset settings
dataset_type = "WaymoDataset"
data_root = "data/waymo"
ignore_index = -1
names = [
    "Car",
    "Truck",
    "Bus",
    # Other small vehicles (e.g. pedicab) and large vehicles (e.g. construction vehicles, RV, limo, tram).
    "Other Vehicle",
    "Motorcyclist",
    "Bicyclist",
    "Pedestrian",
    "Sign",
    "Traffic Light",
    # Lamp post, traffic sign pole etc.
    "Pole",
    # Construction cone/pole.
    "Construction Cone",
    "Bicycle",
    "Motorcycle",
    "Building",
    # Bushes, tree branches, tall grasses, flowers etc.
    "Vegetation",
    "Tree Trunk",
    # Curb on the edge of roads. This does not include road boundaries if there’s no curb.
    "Curb",
    # Surface a vehicle could drive on. This includes the driveway connecting
    # parking lot and road over a section of sidewalk.
    "Road",
    # Marking on the road that’s specifically for defining lanes such as
    # single/double white/yellow lines.
    "Lane Marker",
    # Marking on the road other than lane markers, bumps, cateyes, railtracks etc.
    "Other Ground",
    # Most horizontal surface that’s not drivable, e.g. grassy hill, pedestrian walkway stairs etc.
    "Walkable",
    # Nicely paved walkable surface when pedestrians most likely to walk on.
    "Sidewalk",
]

data = dict(
    num_classes=22,
    ignore_index=ignore_index,
    names=names,
    train=dict(
        type=dataset_type,
        split="training",
        data_root=data_root,
        transform=[
            # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
            # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
            dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
            # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5),
            # dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5),
            dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
            dict(type="RandomScale", scale=[0.9, 1.1]),
            # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
            dict(type="RandomFlip", p=0.5),
            dict(type="RandomJitter", sigma=0.005, clip=0.02),
            # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
            dict(
                type="GridSample",
                grid_size=0.05,
                hash_type="fnv",
                mode="train",
                keys=("coord", "strength", "segment"),
                return_grid_coord=True,
            ),
            # dict(type="SphereCrop", point_max=1000000, mode="random"),
            # dict(type="CenterShift", apply_z=False),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=("coord", "grid_coord", "segment"),
                feat_keys=("coord", "strength"),
            ),
        ],
        test_mode=False,
        ignore_index=ignore_index,
    ),
    val=dict(
        type=dataset_type,
        split="validation",
        data_root=data_root,
        transform=[
            dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
            dict(
                type="GridSample",
                grid_size=0.05,
                hash_type="fnv",
                mode="train",
                keys=("coord", "strength", "segment"),
                return_grid_coord=True,
            ),
            dict(type="ToTensor"),
            dict(
                type="Collect",
                keys=("coord", "grid_coord", "segment"),
                feat_keys=("coord", "strength"),
            ),
        ],
        test_mode=False,
        ignore_index=ignore_index,
    ),
    test=dict(
        type=dataset_type,
        split="validation",
        data_root=data_root,
        transform=[
            dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
        ],
        test_mode=True,
        test_cfg=dict(
            voxelize=dict(
                type="GridSample",
                grid_size=0.05,
                hash_type="fnv",
                mode="test",
                return_grid_coord=True,
                keys=("coord", "strength"),
            ),
            crop=None,
            post_transform=[
                dict(type="ToTensor"),
                dict(
                    type="Collect",
                    keys=("coord", "grid_coord", "index"),
                    feat_keys=("coord", "strength"),
                ),
            ],
            aug_transform=[
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[0],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[1],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
                [
                    dict(
                        type="RandomRotateTargetAngle",
                        angle=[3 / 2],
                        axis="z",
                        center=[0, 0, 0],
                        p=1,
                    )
                ],
            ],
        ),
        ignore_index=ignore_index,
    ),
)