File size: 21,723 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""
Preprocessing Script for nuScenes Informantion
modified from OpenPCDet (https://github.com/open-mmlab/OpenPCDet)

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import os
from pathlib import Path
import numpy as np
import argparse
import tqdm
import pickle
from functools import reduce
from pyquaternion import Quaternion
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits
from nuscenes.utils.geometry_utils import transform_matrix


map_name_from_general_to_detection = {
    "human.pedestrian.adult": "pedestrian",
    "human.pedestrian.child": "pedestrian",
    "human.pedestrian.wheelchair": "ignore",
    "human.pedestrian.stroller": "ignore",
    "human.pedestrian.personal_mobility": "ignore",
    "human.pedestrian.police_officer": "pedestrian",
    "human.pedestrian.construction_worker": "pedestrian",
    "animal": "ignore",
    "vehicle.car": "car",
    "vehicle.motorcycle": "motorcycle",
    "vehicle.bicycle": "bicycle",
    "vehicle.bus.bendy": "bus",
    "vehicle.bus.rigid": "bus",
    "vehicle.truck": "truck",
    "vehicle.construction": "construction_vehicle",
    "vehicle.emergency.ambulance": "ignore",
    "vehicle.emergency.police": "ignore",
    "vehicle.trailer": "trailer",
    "movable_object.barrier": "barrier",
    "movable_object.trafficcone": "traffic_cone",
    "movable_object.pushable_pullable": "ignore",
    "movable_object.debris": "ignore",
    "static_object.bicycle_rack": "ignore",
}


cls_attr_dist = {
    "barrier": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 0,
        "vehicle.parked": 0,
        "vehicle.stopped": 0,
    },
    "bicycle": {
        "cycle.with_rider": 2791,
        "cycle.without_rider": 8946,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 0,
        "vehicle.parked": 0,
        "vehicle.stopped": 0,
    },
    "bus": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 9092,
        "vehicle.parked": 3294,
        "vehicle.stopped": 3881,
    },
    "car": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 114304,
        "vehicle.parked": 330133,
        "vehicle.stopped": 46898,
    },
    "construction_vehicle": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 882,
        "vehicle.parked": 11549,
        "vehicle.stopped": 2102,
    },
    "ignore": {
        "cycle.with_rider": 307,
        "cycle.without_rider": 73,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 165,
        "vehicle.parked": 400,
        "vehicle.stopped": 102,
    },
    "motorcycle": {
        "cycle.with_rider": 4233,
        "cycle.without_rider": 8326,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 0,
        "vehicle.parked": 0,
        "vehicle.stopped": 0,
    },
    "pedestrian": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 157444,
        "pedestrian.sitting_lying_down": 13939,
        "pedestrian.standing": 46530,
        "vehicle.moving": 0,
        "vehicle.parked": 0,
        "vehicle.stopped": 0,
    },
    "traffic_cone": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 0,
        "vehicle.parked": 0,
        "vehicle.stopped": 0,
    },
    "trailer": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 3421,
        "vehicle.parked": 19224,
        "vehicle.stopped": 1895,
    },
    "truck": {
        "cycle.with_rider": 0,
        "cycle.without_rider": 0,
        "pedestrian.moving": 0,
        "pedestrian.sitting_lying_down": 0,
        "pedestrian.standing": 0,
        "vehicle.moving": 21339,
        "vehicle.parked": 55626,
        "vehicle.stopped": 11097,
    },
}


def get_available_scenes(nusc):
    available_scenes = []
    for scene in nusc.scene:
        scene_token = scene["token"]
        scene_rec = nusc.get("scene", scene_token)
        sample_rec = nusc.get("sample", scene_rec["first_sample_token"])
        sd_rec = nusc.get("sample_data", sample_rec["data"]["LIDAR_TOP"])
        has_more_frames = True
        scene_not_exist = False
        while has_more_frames:
            lidar_path, boxes, _ = nusc.get_sample_data(sd_rec["token"])
            if not Path(lidar_path).exists():
                scene_not_exist = True
                break
            else:
                break
        if scene_not_exist:
            continue
        available_scenes.append(scene)
    return available_scenes


def get_sample_data(nusc, sample_data_token, selected_anntokens=None):
    """
    Returns the data path as well as all annotations related to that sample_data.
    Note that the boxes are transformed into the current sensor"s coordinate frame.
    Args:
        nusc:
        sample_data_token: Sample_data token.
        selected_anntokens: If provided only return the selected annotation.

    Returns:

    """
    # Retrieve sensor & pose records
    sd_record = nusc.get("sample_data", sample_data_token)
    cs_record = nusc.get("calibrated_sensor", sd_record["calibrated_sensor_token"])
    sensor_record = nusc.get("sensor", cs_record["sensor_token"])
    pose_record = nusc.get("ego_pose", sd_record["ego_pose_token"])

    data_path = nusc.get_sample_data_path(sample_data_token)

    if sensor_record["modality"] == "camera":
        cam_intrinsic = np.array(cs_record["camera_intrinsic"])
    else:
        cam_intrinsic = None

    # Retrieve all sample annotations and map to sensor coordinate system.
    if selected_anntokens is not None:
        boxes = list(map(nusc.get_box, selected_anntokens))
    else:
        boxes = nusc.get_boxes(sample_data_token)

    # Make list of Box objects including coord system transforms.
    box_list = []
    for box in boxes:
        box.velocity = nusc.box_velocity(box.token)
        # Move box to ego vehicle coord system
        box.translate(-np.array(pose_record["translation"]))
        box.rotate(Quaternion(pose_record["rotation"]).inverse)

        #  Move box to sensor coord system
        box.translate(-np.array(cs_record["translation"]))
        box.rotate(Quaternion(cs_record["rotation"]).inverse)

        box_list.append(box)

    return data_path, box_list, cam_intrinsic


def quaternion_yaw(q: Quaternion) -> float:
    """
    Calculate the yaw angle from a quaternion.
    Note that this only works for a quaternion that represents a box in lidar or global coordinate frame.
    It does not work for a box in the camera frame.
    :param q: Quaternion of interest.
    :return: Yaw angle in radians.
    """

    # Project into xy plane.
    v = np.dot(q.rotation_matrix, np.array([1, 0, 0]))

    # Measure yaw using arctan.
    yaw = np.arctan2(v[1], v[0])

    return yaw


def obtain_sensor2top(
    nusc, sensor_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, sensor_type="lidar"
):
    """Obtain the info with RT matric from general sensor to Top LiDAR.

    Args:
        nusc (class): Dataset class in the nuScenes dataset.
        sensor_token (str): Sample data token corresponding to the
            specific sensor type.
        l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
        l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
            in shape (3, 3).
        e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
        e2g_r_mat (np.ndarray): Rotation matrix from ego to global
            in shape (3, 3).
        sensor_type (str): Sensor to calibrate. Default: "lidar".

    Returns:
        sweep (dict): Sweep information after transformation.
    """
    sd_rec = nusc.get("sample_data", sensor_token)
    cs_record = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
    pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"])
    data_path = str(nusc.get_sample_data_path(sd_rec["token"]))
    # if os.getcwd() in data_path:  # path from lyftdataset is absolute path
    #     data_path = data_path.split(f"{os.getcwd()}/")[-1]  # relative path
    sweep = {
        "data_path": data_path,
        "type": sensor_type,
        "sample_data_token": sd_rec["token"],
        "sensor2ego_translation": cs_record["translation"],
        "sensor2ego_rotation": cs_record["rotation"],
        "ego2global_translation": pose_record["translation"],
        "ego2global_rotation": pose_record["rotation"],
        "timestamp": sd_rec["timestamp"],
    }
    l2e_r_s = sweep["sensor2ego_rotation"]
    l2e_t_s = sweep["sensor2ego_translation"]
    e2g_r_s = sweep["ego2global_rotation"]
    e2g_t_s = sweep["ego2global_translation"]

    # obtain the RT from sensor to Top LiDAR
    # sweep->ego->global->ego'->lidar
    l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
    e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
    R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
        np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
    )
    T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
        np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
    )
    T -= (
        e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
        + l2e_t @ np.linalg.inv(l2e_r_mat).T
    ).squeeze(0)
    sweep["sensor2lidar_rotation"] = R.T  # points @ R.T + T
    sweep["sensor2lidar_translation"] = T
    return sweep


def fill_trainval_infos(
    data_path, nusc, train_scenes, test=False, max_sweeps=10, with_camera=False
):
    train_nusc_infos = []
    val_nusc_infos = []
    progress_bar = tqdm.tqdm(
        total=len(nusc.sample), desc="create_info", dynamic_ncols=True
    )

    ref_chan = "LIDAR_TOP"  # The radar channel from which we track back n sweeps to aggregate the point cloud.
    chan = "LIDAR_TOP"  # The reference channel of the current sample_rec that the point clouds are mapped to.

    for index, sample in enumerate(nusc.sample):
        progress_bar.update()

        ref_sd_token = sample["data"][ref_chan]
        ref_sd_rec = nusc.get("sample_data", ref_sd_token)
        ref_cs_rec = nusc.get(
            "calibrated_sensor", ref_sd_rec["calibrated_sensor_token"]
        )
        ref_pose_rec = nusc.get("ego_pose", ref_sd_rec["ego_pose_token"])
        ref_time = 1e-6 * ref_sd_rec["timestamp"]

        ref_lidar_path, ref_boxes, _ = get_sample_data(nusc, ref_sd_token)

        ref_cam_front_token = sample["data"]["CAM_FRONT"]
        ref_cam_path, _, ref_cam_intrinsic = nusc.get_sample_data(ref_cam_front_token)

        # Homogeneous transform from ego car frame to reference frame
        ref_from_car = transform_matrix(
            ref_cs_rec["translation"], Quaternion(ref_cs_rec["rotation"]), inverse=True
        )

        # Homogeneous transformation matrix from global to _current_ ego car frame
        car_from_global = transform_matrix(
            ref_pose_rec["translation"],
            Quaternion(ref_pose_rec["rotation"]),
            inverse=True,
        )
        info = {
            "lidar_path": Path(ref_lidar_path).relative_to(data_path).__str__(),
            "lidar_token": ref_sd_token,
            "cam_front_path": Path(ref_cam_path).relative_to(data_path).__str__(),
            "cam_intrinsic": ref_cam_intrinsic,
            "token": sample["token"],
            "sweeps": [],
            "ref_from_car": ref_from_car,
            "car_from_global": car_from_global,
            "timestamp": ref_time,
        }
        if with_camera:
            info["cams"] = dict()
            l2e_r = ref_cs_rec["rotation"]
            l2e_t = (ref_cs_rec["translation"],)
            e2g_r = ref_pose_rec["rotation"]
            e2g_t = ref_pose_rec["translation"]
            l2e_r_mat = Quaternion(l2e_r).rotation_matrix
            e2g_r_mat = Quaternion(e2g_r).rotation_matrix

            # obtain 6 image's information per frame
            camera_types = [
                "CAM_FRONT",
                "CAM_FRONT_RIGHT",
                "CAM_FRONT_LEFT",
                "CAM_BACK",
                "CAM_BACK_LEFT",
                "CAM_BACK_RIGHT",
            ]
            for cam in camera_types:
                cam_token = sample["data"][cam]
                cam_path, _, camera_intrinsics = nusc.get_sample_data(cam_token)
                cam_info = obtain_sensor2top(
                    nusc, cam_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam
                )
                cam_info["data_path"] = (
                    Path(cam_info["data_path"]).relative_to(data_path).__str__()
                )
                cam_info.update(camera_intrinsics=camera_intrinsics)
                info["cams"].update({cam: cam_info})

        sample_data_token = sample["data"][chan]
        curr_sd_rec = nusc.get("sample_data", sample_data_token)
        sweeps = []
        while len(sweeps) < max_sweeps - 1:
            if curr_sd_rec["prev"] == "":
                if len(sweeps) == 0:
                    sweep = {
                        "lidar_path": Path(ref_lidar_path)
                        .relative_to(data_path)
                        .__str__(),
                        "sample_data_token": curr_sd_rec["token"],
                        "transform_matrix": None,
                        "time_lag": curr_sd_rec["timestamp"] * 0,
                    }
                    sweeps.append(sweep)
                else:
                    sweeps.append(sweeps[-1])
            else:
                curr_sd_rec = nusc.get("sample_data", curr_sd_rec["prev"])

                # Get past pose
                current_pose_rec = nusc.get("ego_pose", curr_sd_rec["ego_pose_token"])
                global_from_car = transform_matrix(
                    current_pose_rec["translation"],
                    Quaternion(current_pose_rec["rotation"]),
                    inverse=False,
                )

                # Homogeneous transformation matrix from sensor coordinate frame to ego car frame.
                current_cs_rec = nusc.get(
                    "calibrated_sensor", curr_sd_rec["calibrated_sensor_token"]
                )
                car_from_current = transform_matrix(
                    current_cs_rec["translation"],
                    Quaternion(current_cs_rec["rotation"]),
                    inverse=False,
                )

                tm = reduce(
                    np.dot,
                    [ref_from_car, car_from_global, global_from_car, car_from_current],
                )

                lidar_path = nusc.get_sample_data_path(curr_sd_rec["token"])

                time_lag = ref_time - 1e-6 * curr_sd_rec["timestamp"]

                sweep = {
                    "lidar_path": Path(lidar_path).relative_to(data_path).__str__(),
                    "sample_data_token": curr_sd_rec["token"],
                    "transform_matrix": tm,
                    "global_from_car": global_from_car,
                    "car_from_current": car_from_current,
                    "time_lag": time_lag,
                }
                sweeps.append(sweep)

        info["sweeps"] = sweeps

        assert len(info["sweeps"]) == max_sweeps - 1, (
            f"sweep {curr_sd_rec['token']} only has {len(info['sweeps'])} sweeps, "
            f"you should duplicate to sweep num {max_sweeps - 1}"
        )

        if not test:
            # processing gt bbox
            annotations = [
                nusc.get("sample_annotation", token) for token in sample["anns"]
            ]

            # the filtering gives 0.5~1 map improvement
            num_lidar_pts = np.array([anno["num_lidar_pts"] for anno in annotations])
            num_radar_pts = np.array([anno["num_radar_pts"] for anno in annotations])
            mask = num_lidar_pts + num_radar_pts > 0

            locs = np.array([b.center for b in ref_boxes]).reshape(-1, 3)
            dims = np.array([b.wlh for b in ref_boxes]).reshape(-1, 3)[
                :, [1, 0, 2]
            ]  # wlh == > dxdydz (lwh)
            velocity = np.array([b.velocity for b in ref_boxes]).reshape(-1, 3)
            rots = np.array([quaternion_yaw(b.orientation) for b in ref_boxes]).reshape(
                -1, 1
            )
            names = np.array([b.name for b in ref_boxes])
            tokens = np.array([b.token for b in ref_boxes])
            gt_boxes = np.concatenate([locs, dims, rots, velocity[:, :2]], axis=1)

            assert len(annotations) == len(gt_boxes) == len(velocity)

            info["gt_boxes"] = gt_boxes[mask, :]
            info["gt_boxes_velocity"] = velocity[mask, :]
            info["gt_names"] = np.array(
                [map_name_from_general_to_detection[name] for name in names]
            )[mask]
            info["gt_boxes_token"] = tokens[mask]
            info["num_lidar_pts"] = num_lidar_pts[mask]
            info["num_radar_pts"] = num_radar_pts[mask]

            # processing gt segment
            segment_path = nusc.get("lidarseg", ref_sd_token)["filename"]
            info["gt_segment_path"] = segment_path

        if sample["scene_token"] in train_scenes:
            train_nusc_infos.append(info)
        else:
            val_nusc_infos.append(info)

    progress_bar.close()
    return train_nusc_infos, val_nusc_infos


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset_root", required=True, help="Path to the nuScenes dataset."
    )
    parser.add_argument(
        "--output_root",
        required=True,
        help="Output path where processed information located.",
    )
    parser.add_argument(
        "--max_sweeps", default=10, type=int, help="Max number of sweeps. Default: 10."
    )
    parser.add_argument(
        "--with_camera",
        action="store_true",
        default=False,
        help="Whether use camera or not.",
    )
    config = parser.parse_args()

    print(f"Loading nuScenes tables for version v1.0-trainval...")
    nusc_trainval = NuScenes(
        version="v1.0-trainval", dataroot=config.dataset_root, verbose=False
    )
    available_scenes_trainval = get_available_scenes(nusc_trainval)
    available_scene_names_trainval = [s["name"] for s in available_scenes_trainval]
    print("total scene num:", len(nusc_trainval.scene))
    print("exist scene num:", len(available_scenes_trainval))
    assert len(available_scenes_trainval) == len(nusc_trainval.scene) == 850

    print(f"Loading nuScenes tables for version v1.0-test...")
    nusc_test = NuScenes(
        version="v1.0-test", dataroot=config.dataset_root, verbose=False
    )
    available_scenes_test = get_available_scenes(nusc_test)
    available_scene_names_test = [s["name"] for s in available_scenes_test]
    print("total scene num:", len(nusc_test.scene))
    print("exist scene num:", len(available_scenes_test))
    assert len(available_scenes_test) == len(nusc_test.scene) == 150

    train_scenes = splits.train
    train_scenes = set(
        [
            available_scenes_trainval[available_scene_names_trainval.index(s)]["token"]
            for s in train_scenes
        ]
    )
    test_scenes = splits.test
    test_scenes = set(
        [
            available_scenes_test[available_scene_names_test.index(s)]["token"]
            for s in test_scenes
        ]
    )
    print(f"Filling trainval information...")
    train_nusc_infos, val_nusc_infos = fill_trainval_infos(
        config.dataset_root,
        nusc_trainval,
        train_scenes,
        test=False,
        max_sweeps=config.max_sweeps,
        with_camera=config.with_camera,
    )
    print(f"Filling test information...")
    test_nusc_infos, _ = fill_trainval_infos(
        config.dataset_root,
        nusc_test,
        test_scenes,
        test=True,
        max_sweeps=config.max_sweeps,
        with_camera=config.with_camera,
    )

    print(f"Saving nuScenes information...")
    os.makedirs(os.path.join(config.output_root, "info"), exist_ok=True)
    print(
        f"train sample: {len(train_nusc_infos)}, val sample: {len(val_nusc_infos)}, test sample: {len(test_nusc_infos)}"
    )
    with open(
        os.path.join(
            config.output_root,
            "info",
            f"nuscenes_infos_{config.max_sweeps}sweeps_train.pkl",
        ),
        "wb",
    ) as f:
        pickle.dump(train_nusc_infos, f)
    with open(
        os.path.join(
            config.output_root,
            "info",
            f"nuscenes_infos_{config.max_sweeps}sweeps_val.pkl",
        ),
        "wb",
    ) as f:
        pickle.dump(val_nusc_infos, f)
    with open(
        os.path.join(
            config.output_root,
            "info",
            f"nuscenes_infos_{config.max_sweeps}sweeps_test.pkl",
        ),
        "wb",
    ) as f:
        pickle.dump(test_nusc_infos, f)