Spaces:
Runtime error
Runtime error
File size: 7,890 Bytes
4893ce0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
"""
Preprocessing Script for S3DIS
Parsing normal vectors has a large consumption of memory. Please reduce max_workers if memory is limited.
Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""
import os
import argparse
import glob
import numpy as np
try:
import open3d
except ImportError:
import warnings
warnings.warn("Please install open3d for parsing normal")
try:
import trimesh
except ImportError:
import warnings
warnings.warn("Please install trimesh for parsing normal")
from concurrent.futures import ProcessPoolExecutor
from itertools import repeat
area_mesh_dict = {}
def parse_room(
room, angle, dataset_root, output_root, align_angle=True, parse_normal=False
):
print("Parsing: {}".format(room))
classes = [
"ceiling",
"floor",
"wall",
"beam",
"column",
"window",
"door",
"table",
"chair",
"sofa",
"bookcase",
"board",
"clutter",
]
class2label = {cls: i for i, cls in enumerate(classes)}
source_dir = os.path.join(dataset_root, room)
save_path = os.path.join(output_root, room)
os.makedirs(save_path, exist_ok=True)
object_path_list = sorted(glob.glob(os.path.join(source_dir, "Annotations/*.txt")))
room_coords = []
room_colors = []
room_normals = []
room_semantic_gt = []
room_instance_gt = []
for object_id, object_path in enumerate(object_path_list):
object_name = os.path.basename(object_path).split("_")[0]
obj = np.loadtxt(object_path)
coords = obj[:, :3]
colors = obj[:, 3:6]
# note: in some room there is 'stairs' class
class_name = object_name if object_name in classes else "clutter"
semantic_gt = np.repeat(class2label[class_name], coords.shape[0])
semantic_gt = semantic_gt.reshape([-1, 1])
instance_gt = np.repeat(object_id, coords.shape[0])
instance_gt = instance_gt.reshape([-1, 1])
room_coords.append(coords)
room_colors.append(colors)
room_semantic_gt.append(semantic_gt)
room_instance_gt.append(instance_gt)
room_coords = np.ascontiguousarray(np.vstack(room_coords))
if parse_normal:
x_min, z_max, y_min = np.min(room_coords, axis=0)
x_max, z_min, y_max = np.max(room_coords, axis=0)
z_max = -z_max
z_min = -z_min
max_bound = np.array([x_max, y_max, z_max]) + 0.1
min_bound = np.array([x_min, y_min, z_min]) - 0.1
bbox = open3d.geometry.AxisAlignedBoundingBox(
min_bound=min_bound, max_bound=max_bound
)
# crop room
room_mesh = (
area_mesh_dict[os.path.dirname(room)]
.crop(bbox)
.transform(
np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
)
)
vertices = np.array(room_mesh.vertices)
faces = np.array(room_mesh.triangles)
vertex_normals = np.array(room_mesh.vertex_normals)
room_mesh = trimesh.Trimesh(
vertices=vertices, faces=faces, vertex_normals=vertex_normals
)
(closest_points, distances, face_id) = room_mesh.nearest.on_surface(room_coords)
room_normals = room_mesh.face_normals[face_id]
if align_angle:
angle = (2 - angle / 180) * np.pi
rot_cos, rot_sin = np.cos(angle), np.sin(angle)
rot_t = np.array([[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]])
room_center = (np.max(room_coords, axis=0) + np.min(room_coords, axis=0)) / 2
room_coords = (room_coords - room_center) @ np.transpose(rot_t) + room_center
if parse_normal:
room_normals = room_normals @ np.transpose(rot_t)
room_colors = np.ascontiguousarray(np.vstack(room_colors))
room_semantic_gt = np.ascontiguousarray(np.vstack(room_semantic_gt))
room_instance_gt = np.ascontiguousarray(np.vstack(room_instance_gt))
np.save(os.path.join(save_path, "coord.npy"), room_coords.astype(np.float32))
np.save(os.path.join(save_path, "color.npy"), room_colors.astype(np.uint8))
np.save(os.path.join(save_path, "segment.npy"), room_semantic_gt.astype(np.int16))
np.save(os.path.join(save_path, "instance.npy"), room_instance_gt.astype(np.int16))
if parse_normal:
np.save(os.path.join(save_path, "normal.npy"), room_normals.astype(np.float32))
def main_process():
parser = argparse.ArgumentParser()
parser.add_argument(
"--splits",
required=True,
nargs="+",
choices=["Area_1", "Area_2", "Area_3", "Area_4", "Area_5", "Area_6"],
help="Splits need to process ([Area_1, Area_2, Area_3, Area_4, Area_5, Area_6]).",
)
parser.add_argument(
"--dataset_root", required=True, help="Path to Stanford3dDataset_v1.2 dataset"
)
parser.add_argument(
"--output_root",
required=True,
help="Output path where area folders will be located",
)
parser.add_argument(
"--raw_root",
default=None,
help="Path to Stanford2d3dDataset_noXYZ dataset (optional)",
)
parser.add_argument(
"--align_angle", action="store_true", help="Whether align room angles"
)
parser.add_argument(
"--parse_normal", action="store_true", help="Whether process normal"
)
parser.add_argument(
"--num_workers", default=1, type=int, help="Num workers for preprocessing."
)
args = parser.parse_args()
if args.parse_normal:
assert args.raw_root is not None
room_list = []
angle_list = []
# Load room information
print("Loading room information ...")
for split in args.splits:
area_info = np.loadtxt(
os.path.join(
args.dataset_root,
split,
f"{split}_alignmentAngle.txt",
),
dtype=str,
)
room_list += [os.path.join(split, room_info[0]) for room_info in area_info]
angle_list += [int(room_info[1]) for room_info in area_info]
if args.parse_normal:
# load raw mesh file to extract normal
print("Loading raw mesh file ...")
for split in args.splits:
if split != "Area_5":
mesh_dir = os.path.join(args.raw_root, split, "3d", "rgb.obj")
mesh = open3d.io.read_triangle_mesh(mesh_dir)
mesh.triangle_uvs.clear()
else:
mesh_a_dir = os.path.join(args.raw_root, f"{split}a", "3d", "rgb.obj")
mesh_b_dir = os.path.join(args.raw_root, f"{split}b", "3d", "rgb.obj")
mesh_a = open3d.io.read_triangle_mesh(mesh_a_dir)
mesh_a.triangle_uvs.clear()
mesh_b = open3d.io.read_triangle_mesh(mesh_b_dir)
mesh_b.triangle_uvs.clear()
mesh_b = mesh_b.transform(
np.array(
[
[0, 0, -1, -4.09703582],
[0, 1, 0, 0],
[1, 0, 0, -6.22617759],
[0, 0, 0, 1],
]
)
)
mesh = mesh_a + mesh_b
area_mesh_dict[split] = mesh
print(f"{split} mesh is loaded")
# Preprocess data.
print("Processing scenes...")
pool = ProcessPoolExecutor(
max_workers=args.num_workers
) # peak 110G memory when parsing normal.
_ = list(
pool.map(
parse_room,
room_list,
angle_list,
repeat(args.dataset_root),
repeat(args.output_root),
repeat(args.align_angle),
repeat(args.parse_normal),
)
)
if __name__ == "__main__":
main_process()
|