File size: 7,101 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os, struct
import numpy as np
import zlib
import imageio
import cv2

COMPRESSION_TYPE_COLOR = {-1: "unknown", 0: "raw", 1: "png", 2: "jpeg"}
COMPRESSION_TYPE_DEPTH = {
    -1: "unknown",
    0: "raw_ushort",
    1: "zlib_ushort",
    2: "occi_ushort",
}


class RGBDFrame:
    def load(self, file_handle):
        self.camera_to_world = np.asarray(
            struct.unpack("f" * 16, file_handle.read(16 * 4)), dtype=np.float32
        ).reshape(4, 4)
        self.timestamp_color = struct.unpack("Q", file_handle.read(8))[0]
        self.timestamp_depth = struct.unpack("Q", file_handle.read(8))[0]
        self.color_size_bytes = struct.unpack("Q", file_handle.read(8))[0]
        self.depth_size_bytes = struct.unpack("Q", file_handle.read(8))[0]
        self.color_data = b"".join(
            struct.unpack(
                "c" * self.color_size_bytes, file_handle.read(self.color_size_bytes)
            )
        )
        self.depth_data = b"".join(
            struct.unpack(
                "c" * self.depth_size_bytes, file_handle.read(self.depth_size_bytes)
            )
        )

    def decompress_depth(self, compression_type):
        if compression_type == "zlib_ushort":
            return self.decompress_depth_zlib()
        else:
            raise

    def decompress_depth_zlib(self):
        return zlib.decompress(self.depth_data)

    def decompress_color(self, compression_type):
        if compression_type == "jpeg":
            return self.decompress_color_jpeg()
        else:
            raise

    def decompress_color_jpeg(self):
        return imageio.imread(self.color_data)


class SensorData:
    def __init__(self, filename):
        self.version = 4
        self.load(filename)

    def load(self, filename):
        with open(filename, "rb") as f:
            version = struct.unpack("I", f.read(4))[0]
            assert self.version == version
            strlen = struct.unpack("Q", f.read(8))[0]
            self.sensor_name = b"".join(struct.unpack("c" * strlen, f.read(strlen)))
            self.intrinsic_color = np.asarray(
                struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32
            ).reshape(4, 4)
            self.extrinsic_color = np.asarray(
                struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32
            ).reshape(4, 4)
            self.intrinsic_depth = np.asarray(
                struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32
            ).reshape(4, 4)
            self.extrinsic_depth = np.asarray(
                struct.unpack("f" * 16, f.read(16 * 4)), dtype=np.float32
            ).reshape(4, 4)
            self.color_compression_type = COMPRESSION_TYPE_COLOR[
                struct.unpack("i", f.read(4))[0]
            ]
            self.depth_compression_type = COMPRESSION_TYPE_DEPTH[
                struct.unpack("i", f.read(4))[0]
            ]
            self.color_width = struct.unpack("I", f.read(4))[0]
            self.color_height = struct.unpack("I", f.read(4))[0]
            self.depth_width = struct.unpack("I", f.read(4))[0]
            self.depth_height = struct.unpack("I", f.read(4))[0]
            self.depth_shift = struct.unpack("f", f.read(4))[0]
            num_frames = struct.unpack("Q", f.read(8))[0]
            self.frames = []
            for i in range(num_frames):
                frame = RGBDFrame()
                frame.load(f)
                self.frames.append(frame)

    def export_depth_images(self, output_path, image_size=None, frame_skip=1):
        if not os.path.exists(output_path):
            os.makedirs(output_path)
        print(
            "exporting", len(self.frames) // frame_skip, " depth frames to", output_path
        )
        for f in range(0, len(self.frames), frame_skip):
            if os.path.exists((os.path.join(output_path, str(f) + ".png"))):
                continue
            if f % 100 == 0:
                print(
                    "exporting",
                    f,
                    "th depth frames to",
                    os.path.join(output_path, str(f) + ".png"),
                )

            depth_data = self.frames[f].decompress_depth(self.depth_compression_type)
            depth = np.fromstring(depth_data, dtype=np.uint16).reshape(
                self.depth_height, self.depth_width
            )
            if image_size is not None:
                depth = cv2.resize(
                    depth,
                    (image_size[1], image_size[0]),
                    interpolation=cv2.INTER_NEAREST,
                )
            imageio.imwrite(os.path.join(output_path, str(f) + ".png"), depth)

    def export_color_images(self, output_path, image_size=None, frame_skip=1):
        if not os.path.exists(output_path):
            os.makedirs(output_path)
        print(
            "exporting", len(self.frames) // frame_skip, "color frames to", output_path
        )
        for f in range(0, len(self.frames), frame_skip):
            if os.path.exists((os.path.join(output_path, str(f) + ".png"))):
                continue
            if f % 100 == 0:
                print(
                    "exporting",
                    f,
                    "th color frames to",
                    os.path.join(output_path, str(f) + ".png"),
                )
            color = self.frames[f].decompress_color(self.color_compression_type)
            if image_size is not None:
                color = cv2.resize(
                    color,
                    (image_size[1], image_size[0]),
                    interpolation=cv2.INTER_NEAREST,
                )
            # imageio.imwrite(os.path.join(output_path, str(f) + '.jpg'), color)
            imageio.imwrite(os.path.join(output_path, str(f) + ".png"), color)

    def save_mat_to_file(self, matrix, filename):
        with open(filename, "w") as f:
            for line in matrix:
                np.savetxt(f, line[np.newaxis], fmt="%f")

    def export_poses(self, output_path, frame_skip=1):
        if not os.path.exists(output_path):
            os.makedirs(output_path)
        print(
            "exporting", len(self.frames) // frame_skip, "camera poses to", output_path
        )
        for f in range(0, len(self.frames), frame_skip):
            self.save_mat_to_file(
                self.frames[f].camera_to_world,
                os.path.join(output_path, str(f) + ".txt"),
            )

    def export_intrinsics(self, output_path):
        if not os.path.exists(output_path):
            os.makedirs(output_path)
        print("exporting camera intrinsics to", output_path)
        self.save_mat_to_file(
            self.intrinsic_color, os.path.join(output_path, "intrinsic_color.txt")
        )
        self.save_mat_to_file(
            self.extrinsic_color, os.path.join(output_path, "extrinsic_color.txt")
        )
        self.save_mat_to_file(
            self.intrinsic_depth, os.path.join(output_path, "intrinsic_depth.txt")
        )
        self.save_mat_to_file(
            self.extrinsic_depth, os.path.join(output_path, "extrinsic_depth.txt")
        )