File size: 21,058 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
Octree Transformer

Modified from https://github.com/octree-nn/octformer

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

from typing import Optional, List, Dict
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

try:
    import ocnn
    from ocnn.octree import Octree, Points
except ImportError:
    from pointcept.utils.misc import DummyClass

    ocnn = None
    Octree = DummyClass
    Points = DummyClass

try:
    import dwconv
except ImportError:
    dwconv = None

from pointcept.models.builder import MODELS
from pointcept.models.utils import offset2batch


class OctreeT(Octree):
    def __init__(
        self,
        octree: Octree,
        patch_size: int = 24,
        dilation: int = 4,
        nempty: bool = True,
        max_depth: Optional[int] = None,
        start_depth: Optional[int] = None,
        **kwargs
    ):
        super().__init__(octree.depth, octree.full_depth)
        self.__dict__.update(octree.__dict__)

        self.patch_size = patch_size
        self.dilation = dilation
        self.nempty = nempty
        self.max_depth = max_depth or self.depth
        self.start_depth = start_depth or self.full_depth
        self.invalid_mask_value = -1e3
        assert self.start_depth > 1

        self.block_num = patch_size * dilation
        self.nnum_t = self.nnum_nempty if nempty else self.nnum
        self.nnum_a = ((self.nnum_t / self.block_num).ceil() * self.block_num).int()

        num = self.max_depth + 1
        self.batch_idx = [None] * num
        self.patch_mask = [None] * num
        self.dilate_mask = [None] * num
        self.rel_pos = [None] * num
        self.dilate_pos = [None] * num
        self.build_t()

    def build_t(self):
        for d in range(self.start_depth, self.max_depth + 1):
            self.build_batch_idx(d)
            self.build_attn_mask(d)
            self.build_rel_pos(d)

    def build_batch_idx(self, depth: int):
        batch = self.batch_id(depth, self.nempty)
        self.batch_idx[depth] = self.patch_partition(batch, depth, self.batch_size)

    def build_attn_mask(self, depth: int):
        batch = self.batch_idx[depth]
        mask = batch.view(-1, self.patch_size)
        self.patch_mask[depth] = self._calc_attn_mask(mask)

        mask = batch.view(-1, self.patch_size, self.dilation)
        mask = mask.transpose(1, 2).reshape(-1, self.patch_size)
        self.dilate_mask[depth] = self._calc_attn_mask(mask)

    def _calc_attn_mask(self, mask: torch.Tensor):
        attn_mask = mask.unsqueeze(2) - mask.unsqueeze(1)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, self.invalid_mask_value)
        return attn_mask

    def build_rel_pos(self, depth: int):
        key = self.key(depth, self.nempty)
        key = self.patch_partition(key, depth)
        x, y, z, _ = ocnn.octree.key2xyz(key, depth)
        xyz = torch.stack([x, y, z], dim=1)

        xyz = xyz.view(-1, self.patch_size, 3)
        self.rel_pos[depth] = xyz.unsqueeze(2) - xyz.unsqueeze(1)

        xyz = xyz.view(-1, self.patch_size, self.dilation, 3)
        xyz = xyz.transpose(1, 2).reshape(-1, self.patch_size, 3)
        self.dilate_pos[depth] = xyz.unsqueeze(2) - xyz.unsqueeze(1)

    def patch_partition(self, data: torch.Tensor, depth: int, fill_value=0):
        num = self.nnum_a[depth] - self.nnum_t[depth]
        tail = data.new_full((num,) + data.shape[1:], fill_value)
        return torch.cat([data, tail], dim=0)

    def patch_reverse(self, data: torch.Tensor, depth: int):
        return data[: self.nnum_t[depth]]


class MLP(torch.nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        activation=torch.nn.GELU,
        drop: float = 0.0,
        **kwargs
    ):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features or in_features
        self.hidden_features = hidden_features or in_features

        self.fc1 = torch.nn.Linear(self.in_features, self.hidden_features)
        self.act = activation()
        self.fc2 = torch.nn.Linear(self.hidden_features, self.out_features)
        self.drop = torch.nn.Dropout(drop, inplace=True)

    def forward(self, data: torch.Tensor):
        data = self.fc1(data)
        data = self.act(data)
        data = self.drop(data)
        data = self.fc2(data)
        data = self.drop(data)
        return data


class OctreeDWConvBn(torch.nn.Module):
    def __init__(
        self,
        in_channels: int,
        kernel_size: List[int] = [3],
        stride: int = 1,
        nempty: bool = False,
    ):
        super().__init__()
        self.conv = dwconv.OctreeDWConv(
            in_channels, kernel_size, nempty, use_bias=False
        )
        self.bn = torch.nn.BatchNorm1d(in_channels)

    def forward(self, data: torch.Tensor, octree: Octree, depth: int):
        out = self.conv(data, octree, depth)
        out = self.bn(out)
        return out


class RPE(torch.nn.Module):
    def __init__(self, patch_size: int, num_heads: int, dilation: int = 1):
        super().__init__()
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.dilation = dilation
        self.pos_bnd = self.get_pos_bnd(patch_size)
        self.rpe_num = 2 * self.pos_bnd + 1
        self.rpe_table = torch.nn.Parameter(torch.zeros(3 * self.rpe_num, num_heads))
        torch.nn.init.trunc_normal_(self.rpe_table, std=0.02)

    def get_pos_bnd(self, patch_size: int):
        return int(0.8 * patch_size * self.dilation**0.5)

    def xyz2idx(self, xyz: torch.Tensor):
        mul = torch.arange(3, device=xyz.device) * self.rpe_num
        xyz = xyz.clamp(-self.pos_bnd, self.pos_bnd)
        idx = xyz + (self.pos_bnd + mul)
        return idx

    def forward(self, xyz):
        idx = self.xyz2idx(xyz)
        out = self.rpe_table.index_select(0, idx.reshape(-1))
        out = out.view(idx.shape + (-1,)).sum(3)
        out = out.permute(0, 3, 1, 2)  # (N, K, K, H) -> (N, H, K, K)
        return out

    def extra_repr(self) -> str:
        return "num_heads={}, pos_bnd={}, dilation={}".format(
            self.num_heads, self.pos_bnd, self.dilation
        )  # noqa


class OctreeAttention(torch.nn.Module):
    def __init__(
        self,
        dim: int,
        patch_size: int,
        num_heads: int,
        qkv_bias: bool = True,
        qk_scale: Optional[float] = None,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        dilation: int = 1,
        use_rpe: bool = True,
    ):
        super().__init__()
        self.dim = dim
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.dilation = dilation
        self.use_rpe = use_rpe
        self.scale = qk_scale or (dim // num_heads) ** -0.5

        self.qkv = torch.nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = torch.nn.Dropout(attn_drop)
        self.proj = torch.nn.Linear(dim, dim)
        self.proj_drop = torch.nn.Dropout(proj_drop)
        self.softmax = torch.nn.Softmax(dim=-1)
        self.rpe = RPE(patch_size, num_heads, dilation) if use_rpe else None

    def forward(self, data: torch.Tensor, octree: OctreeT, depth: int):
        H = self.num_heads
        K = self.patch_size
        C = self.dim
        D = self.dilation

        # patch partition
        data = octree.patch_partition(data, depth)
        if D > 1:  # dilation
            rel_pos = octree.dilate_pos[depth]
            mask = octree.dilate_mask[depth]
            data = data.view(-1, K, D, C).transpose(1, 2).reshape(-1, C)
        else:
            rel_pos = octree.rel_pos[depth]
            mask = octree.patch_mask[depth]
        data = data.view(-1, K, C)

        # qkv
        qkv = self.qkv(data).reshape(-1, K, 3, H, C // H).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # (N, H, K, C')
        q = q * self.scale

        # attn
        attn = q @ k.transpose(-2, -1)  # (N, H, K, K)
        attn = self.apply_rpe(attn, rel_pos)  # (N, H, K, K)
        attn = attn + mask.unsqueeze(1)
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        data = (attn @ v).transpose(1, 2).reshape(-1, C)

        # patch reverse
        if D > 1:  # dilation
            data = data.view(-1, D, K, C).transpose(1, 2).reshape(-1, C)
        data = octree.patch_reverse(data, depth)

        # ffn
        data = self.proj(data)
        data = self.proj_drop(data)
        return data

    def apply_rpe(self, attn, rel_pos):
        if self.use_rpe:
            attn = attn + self.rpe(rel_pos)
        return attn

    def extra_repr(self) -> str:
        return "dim={}, patch_size={}, num_heads={}, dilation={}".format(
            self.dim, self.patch_size, self.num_heads, self.dilation
        )  # noqa


class OctFormerBlock(torch.nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        patch_size: int = 32,
        dilation: int = 0,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        qk_scale: Optional[float] = None,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        drop_path: float = 0.0,
        nempty: bool = True,
        activation: torch.nn.Module = torch.nn.GELU,
        **kwargs
    ):
        super().__init__()
        self.norm1 = torch.nn.LayerNorm(dim)
        self.attention = OctreeAttention(
            dim,
            patch_size,
            num_heads,
            qkv_bias,
            qk_scale,
            attn_drop,
            proj_drop,
            dilation,
        )
        self.norm2 = torch.nn.LayerNorm(dim)
        self.mlp = MLP(dim, int(dim * mlp_ratio), dim, activation, proj_drop)
        self.drop_path = ocnn.nn.OctreeDropPath(drop_path, nempty)
        self.cpe = OctreeDWConvBn(dim, nempty=nempty)

    def forward(self, data: torch.Tensor, octree: OctreeT, depth: int):
        data = self.cpe(data, octree, depth) + data
        attn = self.attention(self.norm1(data), octree, depth)
        data = data + self.drop_path(attn, octree, depth)
        ffn = self.mlp(self.norm2(data))
        data = data + self.drop_path(ffn, octree, depth)
        return data


class OctFormerStage(torch.nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        patch_size: int = 32,
        dilation: int = 0,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        qk_scale: Optional[float] = None,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        drop_path: float = 0.0,
        nempty: bool = True,
        activation: torch.nn.Module = torch.nn.GELU,
        interval: int = 6,
        use_checkpoint: bool = True,
        num_blocks: int = 2,
        octformer_block=OctFormerBlock,
        **kwargs
    ):
        super().__init__()
        self.num_blocks = num_blocks
        self.use_checkpoint = use_checkpoint
        self.interval = interval  # normalization interval
        self.num_norms = (num_blocks - 1) // self.interval

        self.blocks = torch.nn.ModuleList(
            [
                octformer_block(
                    dim=dim,
                    num_heads=num_heads,
                    patch_size=patch_size,
                    dilation=1 if (i % 2 == 0) else dilation,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    attn_drop=attn_drop,
                    proj_drop=proj_drop,
                    drop_path=(
                        drop_path[i] if isinstance(drop_path, list) else drop_path
                    ),
                    nempty=nempty,
                    activation=activation,
                )
                for i in range(num_blocks)
            ]
        )
        # self.norms = torch.nn.ModuleList([
        #     torch.nn.BatchNorm1d(dim) for _ in range(self.num_norms)])

    def forward(self, data: torch.Tensor, octree: OctreeT, depth: int):
        for i in range(self.num_blocks):
            if self.use_checkpoint and self.training:
                data = checkpoint(self.blocks[i], data, octree, depth)
            else:
                data = self.blocks[i](data, octree, depth)
            # if i % self.interval == 0 and i != 0:
            #   data = self.norms[(i - 1) // self.interval](data)
        return data


class OctFormerDecoder(torch.nn.Module):
    def __init__(
        self, channels: List[int], fpn_channel: int, nempty: bool, head_up: int = 1
    ):
        super().__init__()
        self.head_up = head_up
        self.num_stages = len(channels)
        self.conv1x1 = torch.nn.ModuleList(
            [
                torch.nn.Linear(channels[i], fpn_channel)
                for i in range(self.num_stages - 1, -1, -1)
            ]
        )
        self.upsample = ocnn.nn.OctreeUpsample("nearest", nempty)
        self.conv3x3 = torch.nn.ModuleList(
            [
                ocnn.modules.OctreeConvBnRelu(
                    fpn_channel, fpn_channel, kernel_size=[3], stride=1, nempty=nempty
                )
                for _ in range(self.num_stages)
            ]
        )
        self.up_conv = torch.nn.ModuleList(
            [
                ocnn.modules.OctreeDeconvBnRelu(
                    fpn_channel, fpn_channel, kernel_size=[3], stride=2, nempty=nempty
                )
                for _ in range(self.head_up)
            ]
        )

    def forward(self, features: Dict[int, torch.Tensor], octree: Octree):
        depth = min(features.keys())
        depth_max = max(features.keys())
        assert self.num_stages == len(features)

        feature = self.conv1x1[0](features[depth])
        conv_out = self.conv3x3[0](feature, octree, depth)
        out = self.upsample(conv_out, octree, depth, depth_max)
        for i in range(1, self.num_stages):
            depth_i = depth + i
            feature = self.upsample(feature, octree, depth_i - 1)
            feature = self.conv1x1[i](features[depth_i]) + feature
            conv_out = self.conv3x3[i](feature, octree, depth_i)
            out = out + self.upsample(conv_out, octree, depth_i, depth_max)
        for i in range(self.head_up):
            out = self.up_conv[i](out, octree, depth_max + i)
        return out


class PatchEmbed(torch.nn.Module):
    def __init__(
        self,
        in_channels: int = 3,
        dim: int = 96,
        num_down: int = 2,
        nempty: bool = True,
        **kwargs
    ):
        super().__init__()
        self.num_stages = num_down
        self.delta_depth = -num_down
        channels = [int(dim * 2**i) for i in range(-self.num_stages, 1)]

        self.convs = torch.nn.ModuleList(
            [
                ocnn.modules.OctreeConvBnRelu(
                    in_channels if i == 0 else channels[i],
                    channels[i],
                    kernel_size=[3],
                    stride=1,
                    nempty=nempty,
                )
                for i in range(self.num_stages)
            ]
        )
        self.downsamples = torch.nn.ModuleList(
            [
                ocnn.modules.OctreeConvBnRelu(
                    channels[i],
                    channels[i + 1],
                    kernel_size=[2],
                    stride=2,
                    nempty=nempty,
                )
                for i in range(self.num_stages)
            ]
        )
        self.proj = ocnn.modules.OctreeConvBnRelu(
            channels[-1], dim, kernel_size=[3], stride=1, nempty=nempty
        )

    def forward(self, data: torch.Tensor, octree: Octree, depth: int):
        # TODO: reduce to single input
        for i in range(self.num_stages):
            depth_i = depth - i
            data = self.convs[i](data, octree, depth_i)
            data = self.downsamples[i](data, octree, depth_i)
        data = self.proj(data, octree, depth_i - 1)
        return data


class Downsample(torch.nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: List[int] = (2,),
        nempty: bool = True,
    ):
        super().__init__()
        self.norm = torch.nn.BatchNorm1d(out_channels)
        self.conv = ocnn.nn.OctreeConv(
            in_channels,
            out_channels,
            kernel_size,
            stride=2,
            nempty=nempty,
            use_bias=True,
        )

    def forward(self, data: torch.Tensor, octree: Octree, depth: int):
        data = self.conv(data, octree, depth)
        data = self.norm(data)
        return data


@MODELS.register_module("OctFormer-v1m1")
class OctFormer(torch.nn.Module):
    def __init__(
        self,
        in_channels,
        num_classes,
        fpn_channels=168,
        channels=(96, 192, 384, 384),
        num_blocks=(2, 2, 18, 2),
        num_heads=(6, 12, 24, 24),
        patch_size=26,
        stem_down=2,
        head_up=2,
        dilation=4,
        drop_path=0.5,
        nempty=True,
        octree_scale_factor=10.24,
        octree_depth=11,
        octree_full_depth=2,
    ):
        super().__init__()
        assert ocnn is not None, "Please follow `README.md` to install ocnn.`"
        assert dwconv is not None, "Please follow `README.md` to install dwconv.`"

        self.patch_size = patch_size
        self.dilation = dilation
        self.nempty = nempty
        self.num_stages = len(num_blocks)
        self.stem_down = stem_down
        self.octree_scale_factor = octree_scale_factor
        self.octree_depth = octree_depth
        self.octree_full_depth = octree_full_depth
        drop_ratio = torch.linspace(0, drop_path, sum(num_blocks)).tolist()

        self.patch_embed = PatchEmbed(in_channels, channels[0], stem_down, nempty)
        self.layers = torch.nn.ModuleList(
            [
                OctFormerStage(
                    dim=channels[i],
                    num_heads=num_heads[i],
                    patch_size=patch_size,
                    drop_path=drop_ratio[
                        sum(num_blocks[:i]) : sum(num_blocks[: i + 1])
                    ],
                    dilation=dilation,
                    nempty=nempty,
                    num_blocks=num_blocks[i],
                )
                for i in range(self.num_stages)
            ]
        )
        self.downsamples = torch.nn.ModuleList(
            [
                Downsample(channels[i], channels[i + 1], kernel_size=[2], nempty=nempty)
                for i in range(self.num_stages - 1)
            ]
        )
        self.decoder = OctFormerDecoder(
            channels=channels, fpn_channel=fpn_channels, nempty=nempty, head_up=head_up
        )
        self.interp = ocnn.nn.OctreeInterp("nearest", nempty)
        self.seg_head = (
            nn.Sequential(
                nn.Linear(fpn_channels, fpn_channels),
                torch.nn.BatchNorm1d(fpn_channels),
                nn.ReLU(inplace=True),
                nn.Linear(fpn_channels, num_classes),
            )
            if num_classes > 0
            else nn.Identity()
        )

    def points2octree(self, points):
        octree = ocnn.octree.Octree(self.octree_depth, self.octree_full_depth)
        octree.build_octree(points)
        return octree

    def forward(self, data_dict):
        coord = data_dict["coord"]
        normal = data_dict["normal"]
        feat = data_dict["feat"]
        offset = data_dict["offset"]
        batch = offset2batch(offset)

        point = Points(
            points=coord / self.octree_scale_factor,
            normals=normal,
            features=feat,
            batch_id=batch.unsqueeze(-1),
            batch_size=len(offset),
        )
        octree = ocnn.octree.Octree(
            depth=self.octree_depth,
            full_depth=self.octree_full_depth,
            batch_size=len(offset),
            device=coord.device,
        )
        octree.build_octree(point)
        octree.construct_all_neigh()

        feat = self.patch_embed(octree.features[octree.depth], octree, octree.depth)
        depth = octree.depth - self.stem_down  # current octree depth
        octree = OctreeT(
            octree,
            self.patch_size,
            self.dilation,
            self.nempty,
            max_depth=depth,
            start_depth=depth - self.num_stages + 1,
        )
        features = {}
        for i in range(self.num_stages):
            depth_i = depth - i
            feat = self.layers[i](feat, octree, depth_i)
            features[depth_i] = feat
            if i < self.num_stages - 1:
                feat = self.downsamples[i](feat, octree, depth_i)
        out = self.decoder(features, octree)
        # interp representation to points before Octreeization
        query_pts = torch.cat([point.points, point.batch_id], dim=1).contiguous()
        out = self.interp(out, octree, octree.depth, query_pts)
        out = self.seg_head(out)
        return out