Spaces:
Runtime error
Runtime error
File size: 6,551 Bytes
4893ce0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
"""
PointGroup for instance segmentation
Author: Xiaoyang Wu ([email protected]), Chengyao Wang
Please cite our work if the code is helpful to you.
"""
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from pointgroup_ops import ballquery_batch_p, bfs_cluster
except ImportError:
ballquery_batch_p, bfs_cluster = None, None
from pointcept.models.utils import offset2batch, batch2offset
from pointcept.models.builder import MODELS, build_model
@MODELS.register_module("PG-v1m1")
class PointGroup(nn.Module):
def __init__(
self,
backbone,
backbone_out_channels=64,
semantic_num_classes=20,
semantic_ignore_index=-1,
segment_ignore_index=(-1, 0, 1),
instance_ignore_index=-1,
cluster_thresh=1.5,
cluster_closed_points=300,
cluster_propose_points=100,
cluster_min_points=50,
voxel_size=0.02,
):
super().__init__()
norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
self.semantic_num_classes = semantic_num_classes
self.segment_ignore_index = segment_ignore_index
self.semantic_ignore_index = semantic_ignore_index
self.instance_ignore_index = instance_ignore_index
self.cluster_thresh = cluster_thresh
self.cluster_closed_points = cluster_closed_points
self.cluster_propose_points = cluster_propose_points
self.cluster_min_points = cluster_min_points
self.voxel_size = voxel_size
self.backbone = build_model(backbone)
self.bias_head = nn.Sequential(
nn.Linear(backbone_out_channels, backbone_out_channels),
norm_fn(backbone_out_channels),
nn.ReLU(),
nn.Linear(backbone_out_channels, 3),
)
self.seg_head = nn.Linear(backbone_out_channels, semantic_num_classes)
self.ce_criteria = torch.nn.CrossEntropyLoss(ignore_index=semantic_ignore_index)
def forward(self, data_dict):
coord = data_dict["coord"]
segment = data_dict["segment"]
instance = data_dict["instance"]
instance_centroid = data_dict["instance_centroid"]
offset = data_dict["offset"]
feat = self.backbone(data_dict)
bias_pred = self.bias_head(feat)
logit_pred = self.seg_head(feat)
# compute loss
seg_loss = self.ce_criteria(logit_pred, segment)
mask = (instance != self.instance_ignore_index).float()
bias_gt = instance_centroid - coord
bias_dist = torch.sum(torch.abs(bias_pred - bias_gt), dim=-1)
bias_l1_loss = torch.sum(bias_dist * mask) / (torch.sum(mask) + 1e-8)
bias_pred_norm = bias_pred / (
torch.norm(bias_pred, p=2, dim=1, keepdim=True) + 1e-8
)
bias_gt_norm = bias_gt / (torch.norm(bias_gt, p=2, dim=1, keepdim=True) + 1e-8)
cosine_similarity = -(bias_pred_norm * bias_gt_norm).sum(-1)
bias_cosine_loss = torch.sum(cosine_similarity * mask) / (
torch.sum(mask) + 1e-8
)
loss = seg_loss + bias_l1_loss + bias_cosine_loss
return_dict = dict(
loss=loss,
seg_loss=seg_loss,
bias_l1_loss=bias_l1_loss,
bias_cosine_loss=bias_cosine_loss,
)
if not self.training:
center_pred = coord + bias_pred
center_pred /= self.voxel_size
logit_pred = F.softmax(logit_pred, dim=-1)
segment_pred = torch.max(logit_pred, 1)[1] # [n]
# cluster
mask = (
~torch.concat(
[
(segment_pred == index).unsqueeze(-1)
for index in self.segment_ignore_index
],
dim=1,
)
.sum(-1)
.bool()
)
if mask.sum() == 0:
proposals_idx = torch.zeros(0).int()
proposals_offset = torch.zeros(1).int()
else:
center_pred_ = center_pred[mask]
segment_pred_ = segment_pred[mask]
batch_ = offset2batch(offset)[mask]
offset_ = nn.ConstantPad1d((1, 0), 0)(batch2offset(batch_))
idx, start_len = ballquery_batch_p(
center_pred_,
batch_.int(),
offset_.int(),
self.cluster_thresh,
self.cluster_closed_points,
)
proposals_idx, proposals_offset = bfs_cluster(
segment_pred_.int().cpu(),
idx.cpu(),
start_len.cpu(),
self.cluster_min_points,
)
proposals_idx[:, 1] = (
mask.nonzero().view(-1)[proposals_idx[:, 1].long()].int()
)
# get proposal
proposals_pred = torch.zeros(
(proposals_offset.shape[0] - 1, center_pred.shape[0]), dtype=torch.int
)
proposals_pred[proposals_idx[:, 0].long(), proposals_idx[:, 1].long()] = 1
instance_pred = segment_pred[
proposals_idx[:, 1][proposals_offset[:-1].long()].long()
]
proposals_point_num = proposals_pred.sum(1)
proposals_mask = proposals_point_num > self.cluster_propose_points
proposals_pred = proposals_pred[proposals_mask]
instance_pred = instance_pred[proposals_mask]
pred_scores = []
pred_classes = []
pred_masks = proposals_pred.detach().cpu()
for proposal_id in range(len(proposals_pred)):
segment_ = proposals_pred[proposal_id]
confidence_ = logit_pred[
segment_.bool(), instance_pred[proposal_id]
].mean()
object_ = instance_pred[proposal_id]
pred_scores.append(confidence_)
pred_classes.append(object_)
if len(pred_scores) > 0:
pred_scores = torch.stack(pred_scores).cpu()
pred_classes = torch.stack(pred_classes).cpu()
else:
pred_scores = torch.tensor([])
pred_classes = torch.tensor([])
return_dict["pred_scores"] = pred_scores
return_dict["pred_masks"] = pred_masks
return_dict["pred_classes"] = pred_classes
return return_dict
|