File size: 6,551 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
PointGroup for instance segmentation

Author: Xiaoyang Wu ([email protected]), Chengyao Wang
Please cite our work if the code is helpful to you.
"""

from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from pointgroup_ops import ballquery_batch_p, bfs_cluster
except ImportError:
    ballquery_batch_p, bfs_cluster = None, None

from pointcept.models.utils import offset2batch, batch2offset

from pointcept.models.builder import MODELS, build_model


@MODELS.register_module("PG-v1m1")
class PointGroup(nn.Module):
    def __init__(
        self,
        backbone,
        backbone_out_channels=64,
        semantic_num_classes=20,
        semantic_ignore_index=-1,
        segment_ignore_index=(-1, 0, 1),
        instance_ignore_index=-1,
        cluster_thresh=1.5,
        cluster_closed_points=300,
        cluster_propose_points=100,
        cluster_min_points=50,
        voxel_size=0.02,
    ):
        super().__init__()
        norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
        self.semantic_num_classes = semantic_num_classes
        self.segment_ignore_index = segment_ignore_index
        self.semantic_ignore_index = semantic_ignore_index
        self.instance_ignore_index = instance_ignore_index
        self.cluster_thresh = cluster_thresh
        self.cluster_closed_points = cluster_closed_points
        self.cluster_propose_points = cluster_propose_points
        self.cluster_min_points = cluster_min_points
        self.voxel_size = voxel_size
        self.backbone = build_model(backbone)
        self.bias_head = nn.Sequential(
            nn.Linear(backbone_out_channels, backbone_out_channels),
            norm_fn(backbone_out_channels),
            nn.ReLU(),
            nn.Linear(backbone_out_channels, 3),
        )
        self.seg_head = nn.Linear(backbone_out_channels, semantic_num_classes)
        self.ce_criteria = torch.nn.CrossEntropyLoss(ignore_index=semantic_ignore_index)

    def forward(self, data_dict):
        coord = data_dict["coord"]
        segment = data_dict["segment"]
        instance = data_dict["instance"]
        instance_centroid = data_dict["instance_centroid"]
        offset = data_dict["offset"]

        feat = self.backbone(data_dict)
        bias_pred = self.bias_head(feat)
        logit_pred = self.seg_head(feat)

        # compute loss
        seg_loss = self.ce_criteria(logit_pred, segment)

        mask = (instance != self.instance_ignore_index).float()
        bias_gt = instance_centroid - coord
        bias_dist = torch.sum(torch.abs(bias_pred - bias_gt), dim=-1)
        bias_l1_loss = torch.sum(bias_dist * mask) / (torch.sum(mask) + 1e-8)

        bias_pred_norm = bias_pred / (
            torch.norm(bias_pred, p=2, dim=1, keepdim=True) + 1e-8
        )
        bias_gt_norm = bias_gt / (torch.norm(bias_gt, p=2, dim=1, keepdim=True) + 1e-8)
        cosine_similarity = -(bias_pred_norm * bias_gt_norm).sum(-1)
        bias_cosine_loss = torch.sum(cosine_similarity * mask) / (
            torch.sum(mask) + 1e-8
        )

        loss = seg_loss + bias_l1_loss + bias_cosine_loss
        return_dict = dict(
            loss=loss,
            seg_loss=seg_loss,
            bias_l1_loss=bias_l1_loss,
            bias_cosine_loss=bias_cosine_loss,
        )

        if not self.training:
            center_pred = coord + bias_pred
            center_pred /= self.voxel_size
            logit_pred = F.softmax(logit_pred, dim=-1)
            segment_pred = torch.max(logit_pred, 1)[1]  # [n]
            # cluster
            mask = (
                ~torch.concat(
                    [
                        (segment_pred == index).unsqueeze(-1)
                        for index in self.segment_ignore_index
                    ],
                    dim=1,
                )
                .sum(-1)
                .bool()
            )

            if mask.sum() == 0:
                proposals_idx = torch.zeros(0).int()
                proposals_offset = torch.zeros(1).int()
            else:
                center_pred_ = center_pred[mask]
                segment_pred_ = segment_pred[mask]

                batch_ = offset2batch(offset)[mask]
                offset_ = nn.ConstantPad1d((1, 0), 0)(batch2offset(batch_))
                idx, start_len = ballquery_batch_p(
                    center_pred_,
                    batch_.int(),
                    offset_.int(),
                    self.cluster_thresh,
                    self.cluster_closed_points,
                )
                proposals_idx, proposals_offset = bfs_cluster(
                    segment_pred_.int().cpu(),
                    idx.cpu(),
                    start_len.cpu(),
                    self.cluster_min_points,
                )
                proposals_idx[:, 1] = (
                    mask.nonzero().view(-1)[proposals_idx[:, 1].long()].int()
                )

            # get proposal
            proposals_pred = torch.zeros(
                (proposals_offset.shape[0] - 1, center_pred.shape[0]), dtype=torch.int
            )
            proposals_pred[proposals_idx[:, 0].long(), proposals_idx[:, 1].long()] = 1
            instance_pred = segment_pred[
                proposals_idx[:, 1][proposals_offset[:-1].long()].long()
            ]
            proposals_point_num = proposals_pred.sum(1)
            proposals_mask = proposals_point_num > self.cluster_propose_points
            proposals_pred = proposals_pred[proposals_mask]
            instance_pred = instance_pred[proposals_mask]

            pred_scores = []
            pred_classes = []
            pred_masks = proposals_pred.detach().cpu()
            for proposal_id in range(len(proposals_pred)):
                segment_ = proposals_pred[proposal_id]
                confidence_ = logit_pred[
                    segment_.bool(), instance_pred[proposal_id]
                ].mean()
                object_ = instance_pred[proposal_id]
                pred_scores.append(confidence_)
                pred_classes.append(object_)
            if len(pred_scores) > 0:
                pred_scores = torch.stack(pred_scores).cpu()
                pred_classes = torch.stack(pred_classes).cpu()
            else:
                pred_scores = torch.tensor([])
                pred_classes = torch.tensor([])

            return_dict["pred_scores"] = pred_scores
            return_dict["pred_masks"] = pred_masks
            return_dict["pred_classes"] = pred_classes
        return return_dict