Spaces:
Runtime error
Runtime error
File size: 3,369 Bytes
4893ce0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import torch
import pointops
from torch_scatter import (
scatter_max,
scatter_mean,
scatter_add,
scatter_min,
scatter_sum,
)
torch.manual_seed(1)
M = 800000
N = 35000
C = 96
h = 6
query = torch.rand(N, h, C // h).cuda()
key = torch.rand(N, h, C // h).cuda()
index_0 = torch.rand(M)
index_0[index_0 < 0] = 0
index_0 = (index_0 * N).long().cuda()
index_1 = torch.rand(M)
index_1[index_1 < 0] = 0
index_1 = (index_1 * N).long().cuda()
query.requires_grad = True
key.requires_grad = True
attn_flat = pointops.attention_step1(
query.float(), key.float(), index_0.int(), index_1.int()
)
loss = attn_flat.sum()
loss.backward()
print(
"attn_flat.shape: {}, attn_flat[:20,:10]: {}".format(
attn_flat.shape, attn_flat[:20, :10]
)
)
print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5])
print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5])
input()
# rearrange index for acceleration
index_0, indices = torch.sort(index_0) # [M,]
index_1 = index_1[indices] # [M,]
index_0_counts = index_0.bincount()
print("index_0_counts.shape: ", index_0_counts.shape)
n_max = index_0_counts.max()
index_0_offsets = index_0_counts.cumsum(dim=-1) # [N]
print("v1 index_0_offsets.shape: ", index_0_offsets.shape)
index_0_offsets = torch.cat(
[torch.zeros(1, dtype=torch.long).cuda(), index_0_offsets], 0
) # [N+1]
# print("index_0[:100]: ", index_0[:100])
print("n_max: ", n_max)
print("index_0_offsets.shape: ", index_0_offsets.shape)
# input()
print("index_0_offsets[:100]: ", index_0_offsets[:100])
print("index_1[:20]: ", index_1[:20])
attn_flat = pointops.attention_step1(
query.float(), key.float(), index_0.int(), index_1.int()
)
# loss = attn_flat.sum()
# loss.backward()
# # attn_flat = pointops.attention_step1(query.float(), key.float(), index_0.int(), index_1.int())
# # loss = attn_flat.sum()
# # loss.backward()
# print("attn_flat.shape: {}, attn_flat[:20,:10]: {}".format(attn_flat.shape, attn_flat[:20,:10]))
# print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5])
# print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5])
# input()
print("query.is_contiguous(): ", query.is_contiguous())
print("key.is_contiguous(): ", key.is_contiguous())
print("index_0.is_contiguous(): ", index_0.is_contiguous())
print("index_1.is_contiguous(): ", index_1.is_contiguous())
attn_flat_v2 = pointops.attention_step1_v2(
query.float(), key.float(), index_1.int(), index_0_offsets.int(), n_max
)
loss = attn_flat_v2.sum()
loss.backward()
# attn_flat_v2 = pointops.attention_step1_v2(query.float(), key.float(), index_1.int(), index_0_offsets.int(), n_max)
# loss = attn_flat_v2.sum()
# loss.backward()
print(
"attn_flat_v2.shape: {}, attn_flat_v2[:20,:10]: {}".format(
attn_flat_v2.shape, attn_flat_v2[:20, :10]
)
)
print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5])
print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5])
# input()
# mask = attn_flat_v2.sum(-1) != 0
# print("mask.sum(): ", mask.sum())
# print("attn_flat_v2[mask] - attn_flat[mask]: ", ((attn_flat_v2[mask] - attn_flat[mask])**2).max())
print(
"((attn_flat-attn_flat_v2)**2 < 1e-8).all(): ",
((attn_flat - attn_flat_v2) ** 2 < 1e-8).all(),
)
selected = 10000
print(
"torch.max((attn_flat[:selected]-attn_flat_v2[:selected])**2, 0): ",
torch.max((attn_flat[:selected] - attn_flat_v2[:selected]) ** 2, 0),
)
|