Find3D / Pointcept /configs /scannet /pretrain-msc-v1m2-0-spunet-csc.py
ziqima's picture
initial commit
4893ce0
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 32 # bs: total bs in all gpus
num_worker = 32
mix_prob = 0
empty_cache = False
enable_amp = False
evaluate = False
find_unused_parameters = False
# model settings
model = dict(
type="MSC-v1m2",
backbone=dict(
type="SpUNet-v1m1",
in_channels=3,
num_classes=0,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
),
backbone_in_channels=3,
backbone_out_channels=96,
mask_grid_size=0.1,
mask_rate=0,
view1_mix_prob=0,
view2_mix_prob=0,
matching_max_k=8,
matching_max_radius=0.03,
matching_max_pair=8192,
nce_t=0.4,
contrast_weight=1,
reconstruct_weight=1,
reconstruct_color=False,
reconstruct_normal=False,
partitions=4,
r1=2,
r2=20,
)
# scheduler settings
epoch = 10
eval_epoch = 10
optimizer = dict(type="SGD", lr=0.1, momentum=0.8, weight_decay=0.0001, nesterov=True)
scheduler = dict(
type="OneCycleLR",
max_lr=optimizer["lr"],
pct_start=0.01,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=10000.0,
)
# dataset settings
dataset_type = "ScanNetPairDataset"
data_root = "data/scannet_pair"
data = dict(
num_classes=20,
ignore_index=-1,
names=[
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"picture",
"counter",
"desk",
"curtain",
"refridgerator",
"shower curtain",
"toilet",
"sink",
"bathtub",
"otherfurniture",
],
train=dict(
type=dataset_type,
data_root=data_root,
view1_transform=[
dict(type="CenterShift", apply_z=True),
dict(type="Copy", keys_dict={"coord": "origin_coord"}),
# dict(type="RandomScale", scale=[0.9, 1.1]),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=1),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=1),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=1),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(
type="RandomColorJitter",
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.02,
p=0.8,
),
dict(type="ChromaticJitter", p=0.95, std=0.05),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("origin_coord", "coord", "color"),
return_grid_coord=True,
),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("origin_coord", "grid_coord", "coord", "color"),
offset_keys_dict=dict(offset="coord"),
feat_keys=["color"],
),
],
view2_transform=[
dict(type="CenterShift", apply_z=True),
dict(type="Copy", keys_dict={"coord": "origin_coord"}),
# dict(type="RandomScale", scale=[0.9, 1.1]),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=1),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=1),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=1),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(
type="RandomColorJitter",
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.02,
p=0.8,
),
dict(type="ChromaticJitter", p=0.95, std=0.05),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("origin_coord", "coord", "color"),
return_grid_coord=True,
),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("origin_coord", "grid_coord", "coord", "color"),
offset_keys_dict=dict(offset="coord"),
feat_keys=["color"],
),
],
test_mode=False,
),
)
hooks = [
dict(type="CheckpointLoader"),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(type="CheckpointSaver", save_freq=None),
]