Find3D / Pointcept /configs /scannet /semseg-ppt-v1m1-0-sc-st-spunet.py
ziqima's picture
initial commit
4893ce0
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 24 # bs: total bs in all gpus
num_worker = 48
mix_prob = 0.8
empty_cache = False
enable_amp = True
find_unused_parameters = True
# trainer
train = dict(
type="MultiDatasetTrainer",
)
# model settings
model = dict(
type="PPT-v1m1",
backbone=dict(
type="SpUNet-v1m3",
in_channels=6,
num_classes=0,
base_channels=32,
context_channels=256,
channels=(32, 64, 128, 256, 256, 128, 96, 96),
layers=(2, 3, 4, 6, 2, 2, 2, 2),
cls_mode=False,
conditions=("ScanNet", "S3DIS", "Structured3D"),
zero_init=False,
norm_decouple=True,
norm_adaptive=True,
norm_affine=True,
),
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1)],
backbone_out_channels=96,
context_channels=256,
conditions=("Structured3D", "ScanNet", "S3DIS"),
template="[x]",
clip_model="ViT-B/16",
# fmt: off
class_name=(
"wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door",
"window", "bookshelf", "bookcase", "picture", "counter", "desk", "shelves", "curtain",
"dresser", "pillow", "mirror", "ceiling", "refrigerator", "television", "shower curtain", "nightstand",
"toilet", "sink", "lamp", "bathtub", "garbagebin", "board", "beam", "column",
"clutter", "otherstructure", "otherfurniture", "otherprop",
),
valid_index=(
(0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 33, 34, 35),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34),
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32),
),
# fmt: on
backbone_mode=False,
)
# scheduler settings
epoch = 100
optimizer = dict(type="SGD", lr=0.05, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(
type="OneCycleLR",
max_lr=optimizer["lr"],
pct_start=0.05,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=10000.0,
)
# param_dicts = [dict(keyword="modulation", lr=0.005)]
# dataset settings
data = dict(
num_classes=20,
ignore_index=-1,
names=[
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"picture",
"counter",
"desk",
"curtain",
"refridgerator",
"shower curtain",
"toilet",
"sink",
"bathtub",
"otherfurniture",
],
train=dict(
type="ConcatDataset",
datasets=[
# Structured3D
dict(
type="Structured3DDataset",
split="train",
data_root="data/structured3d",
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="RandomDropout",
dropout_ratio=0.2,
dropout_application_ratio=0.2,
),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(
type="RandomRotate",
angle=[-1, 1],
axis="z",
center=[0, 0, 0],
p=0.5,
),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(
type="ElasticDistortion",
distortion_params=[[0.2, 0.4], [0.8, 1.6]],
),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
),
dict(type="SphereCrop", sample_rate=0.8, mode="random"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ShufflePoint"),
dict(type="Add", keys_dict={"condition": "Structured3D"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("color", "normal"),
),
],
test_mode=False,
loop=2, # sampling weight
),
# ScanNet
dict(
type="ScanNetDataset",
split="train",
data_root="data/scannet",
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="RandomDropout",
dropout_ratio=0.2,
dropout_application_ratio=0.2,
),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(
type="RandomRotate",
angle=[-1, 1],
axis="z",
center=[0, 0, 0],
p=0.5,
),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(
type="ElasticDistortion",
distortion_params=[[0.2, 0.4], [0.8, 1.6]],
),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
),
dict(type="SphereCrop", point_max=100000, mode="random"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ShufflePoint"),
dict(type="Add", keys_dict={"condition": "ScanNet"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("color", "normal"),
),
],
test_mode=False,
loop=1, # sampling weight
),
],
),
val=dict(
type="ScanNetDataset",
split="val",
data_root="data/scannet",
transform=[
dict(type="CenterShift", apply_z=True),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="center"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(type="Add", keys_dict={"condition": "ScanNet"}),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("color", "normal"),
),
],
test_mode=False,
),
test=dict(
type="ScanNetDataset",
split="val",
data_root="data/scannet",
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="NormalizeColor"),
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="test",
return_grid_coord=True,
keys=("coord", "color", "normal"),
),
crop=None,
post_transform=[
dict(type="CenterShift", apply_z=False),
dict(type="Add", keys_dict={"condition": "ScanNet"}),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "index", "condition"),
feat_keys=("color", "normal"),
),
],
aug_transform=[
[
dict(
type="RandomRotateTargetAngle",
angle=[0],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1 / 2],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[3 / 2],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[0],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[0.95, 0.95]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1 / 2],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[0.95, 0.95]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[0.95, 0.95]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[3 / 2],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[0.95, 0.95]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[0],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[1.05, 1.05]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1 / 2],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[1.05, 1.05]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[1.05, 1.05]),
],
[
dict(
type="RandomRotateTargetAngle",
angle=[3 / 2],
axis="z",
center=[0, 0, 0],
p=1,
),
dict(type="RandomScale", scale=[1.05, 1.05]),
],
[dict(type="RandomFlip", p=1)],
],
),
),
)