Find3D / Pointcept /configs /waymo /semseg-pt-v3m1-0-base.py
ziqima's picture
initial commit
4893ce0
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
mix_prob = 0.8
empty_cache = False
enable_amp = True
# model settings
model = dict(
type="DefaultSegmentorV2",
num_classes=22,
backbone_out_channels=64,
backbone=dict(
type="PT-v3m1",
in_channels=4,
order=["z", "z-trans", "hilbert", "hilbert-trans"],
stride=(2, 2, 2, 2),
enc_depths=(2, 2, 2, 6, 2),
enc_channels=(32, 64, 128, 256, 512),
enc_num_head=(2, 4, 8, 16, 32),
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
dec_depths=(2, 2, 2, 2),
dec_channels=(64, 64, 128, 256),
dec_num_head=(4, 4, 8, 16),
dec_patch_size=(1024, 1024, 1024, 1024),
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.3,
shuffle_orders=True,
pre_norm=True,
enable_rpe=False,
enable_flash=True,
upcast_attention=False,
upcast_softmax=False,
cls_mode=False,
pdnorm_bn=False,
pdnorm_ln=False,
pdnorm_decouple=True,
pdnorm_adaptive=False,
pdnorm_affine=True,
pdnorm_conditions=("nuScenes", "SemanticKITTI", "Waymo"),
),
criteria=[
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
],
)
# scheduler settings
epoch = 50
eval_epoch = 50
optimizer = dict(type="AdamW", lr=0.002, weight_decay=0.005)
scheduler = dict(
type="OneCycleLR",
max_lr=[0.002, 0.0002],
pct_start=0.04,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=100.0,
)
param_dicts = [dict(keyword="block", lr=0.0002)]
# dataset settings
dataset_type = "WaymoDataset"
data_root = "data/waymo"
ignore_index = -1
names = [
"Car",
"Truck",
"Bus",
# Other small vehicles (e.g. pedicab) and large vehicles (e.g. construction vehicles, RV, limo, tram).
"Other Vehicle",
"Motorcyclist",
"Bicyclist",
"Pedestrian",
"Sign",
"Traffic Light",
# Lamp post, traffic sign pole etc.
"Pole",
# Construction cone/pole.
"Construction Cone",
"Bicycle",
"Motorcycle",
"Building",
# Bushes, tree branches, tall grasses, flowers etc.
"Vegetation",
"Tree Trunk",
# Curb on the edge of roads. This does not include road boundaries if there’s no curb.
"Curb",
# Surface a vehicle could drive on. This includes the driveway connecting
# parking lot and road over a section of sidewalk.
"Road",
# Marking on the road that’s specifically for defining lanes such as
# single/double white/yellow lines.
"Lane Marker",
# Marking on the road other than lane markers, bumps, cateyes, railtracks etc.
"Other Ground",
# Most horizontal surface that’s not drivable, e.g. grassy hill, pedestrian walkway stairs etc.
"Walkable",
# Nicely paved walkable surface when pedestrians most likely to walk on.
"Sidewalk",
]
data = dict(
num_classes=22,
ignore_index=ignore_index,
names=names,
train=dict(
type=dataset_type,
split="training",
data_root=data_root,
transform=[
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-1/6, 1/6], axis="y", p=0.5),
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
# dict(type="SphereCrop", point_max=1000000, mode="random"),
# dict(type="CenterShift", apply_z=False),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
val=dict(
type=dataset_type,
split="validation",
data_root=data_root,
transform=[
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_grid_coord=True,
),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment"),
feat_keys=("coord", "strength"),
),
],
test_mode=False,
ignore_index=ignore_index,
),
test=dict(
type=dataset_type,
split="validation",
data_root=data_root,
transform=[
dict(type="PointClip", point_cloud_range=(-75.2, -75.2, -4, 75.2, 75.2, 2)),
dict(type="Copy", keys_dict={"segment": "origin_segment"}),
dict(
type="GridSample",
grid_size=0.025,
hash_type="fnv",
mode="train",
keys=("coord", "strength", "segment"),
return_inverse=True,
),
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type="GridSample",
grid_size=0.05,
hash_type="fnv",
mode="test",
return_grid_coord=True,
keys=("coord", "strength"),
),
crop=None,
post_transform=[
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "index"),
feat_keys=("coord", "strength"),
),
],
aug_transform=[
[
dict(
type="RandomRotateTargetAngle",
angle=[0],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1 / 2],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[1],
axis="z",
center=[0, 0, 0],
p=1,
)
],
[
dict(
type="RandomRotateTargetAngle",
angle=[3 / 2],
axis="z",
center=[0, 0, 0],
p=1,
)
],
],
),
ignore_index=ignore_index,
),
)