import torch import pointops from torch_scatter import ( scatter_max, scatter_mean, scatter_add, scatter_min, scatter_sum, ) torch.manual_seed(1) M = 800000 N = 35000 C = 96 h = 6 query = torch.rand(N, h, C // h).cuda() key = torch.rand(N, h, C // h).cuda() index_0 = torch.rand(M) index_0[index_0 < 0] = 0 index_0 = (index_0 * N).long().cuda() index_1 = torch.rand(M) index_1[index_1 < 0] = 0 index_1 = (index_1 * N).long().cuda() query.requires_grad = True key.requires_grad = True attn_flat = pointops.attention_step1( query.float(), key.float(), index_0.int(), index_1.int() ) loss = attn_flat.sum() loss.backward() print( "attn_flat.shape: {}, attn_flat[:20,:10]: {}".format( attn_flat.shape, attn_flat[:20, :10] ) ) print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5]) print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5]) input() # rearrange index for acceleration index_0, indices = torch.sort(index_0) # [M,] index_1 = index_1[indices] # [M,] index_0_counts = index_0.bincount() print("index_0_counts.shape: ", index_0_counts.shape) n_max = index_0_counts.max() index_0_offsets = index_0_counts.cumsum(dim=-1) # [N] print("v1 index_0_offsets.shape: ", index_0_offsets.shape) index_0_offsets = torch.cat( [torch.zeros(1, dtype=torch.long).cuda(), index_0_offsets], 0 ) # [N+1] # print("index_0[:100]: ", index_0[:100]) print("n_max: ", n_max) print("index_0_offsets.shape: ", index_0_offsets.shape) # input() print("index_0_offsets[:100]: ", index_0_offsets[:100]) print("index_1[:20]: ", index_1[:20]) attn_flat = pointops.attention_step1( query.float(), key.float(), index_0.int(), index_1.int() ) # loss = attn_flat.sum() # loss.backward() # # attn_flat = pointops.attention_step1(query.float(), key.float(), index_0.int(), index_1.int()) # # loss = attn_flat.sum() # # loss.backward() # print("attn_flat.shape: {}, attn_flat[:20,:10]: {}".format(attn_flat.shape, attn_flat[:20,:10])) # print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5]) # print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5]) # input() print("query.is_contiguous(): ", query.is_contiguous()) print("key.is_contiguous(): ", key.is_contiguous()) print("index_0.is_contiguous(): ", index_0.is_contiguous()) print("index_1.is_contiguous(): ", index_1.is_contiguous()) attn_flat_v2 = pointops.attention_step1_v2( query.float(), key.float(), index_1.int(), index_0_offsets.int(), n_max ) loss = attn_flat_v2.sum() loss.backward() # attn_flat_v2 = pointops.attention_step1_v2(query.float(), key.float(), index_1.int(), index_0_offsets.int(), n_max) # loss = attn_flat_v2.sum() # loss.backward() print( "attn_flat_v2.shape: {}, attn_flat_v2[:20,:10]: {}".format( attn_flat_v2.shape, attn_flat_v2[:20, :10] ) ) print("query.grad[:5, :3, :5]: ", query.grad[:5, :3, :5]) print("key.grad[:5, :3, :5]: ", key.grad[:5, :3, :5]) # input() # mask = attn_flat_v2.sum(-1) != 0 # print("mask.sum(): ", mask.sum()) # print("attn_flat_v2[mask] - attn_flat[mask]: ", ((attn_flat_v2[mask] - attn_flat[mask])**2).max()) print( "((attn_flat-attn_flat_v2)**2 < 1e-8).all(): ", ((attn_flat - attn_flat_v2) ** 2 < 1e-8).all(), ) selected = 10000 print( "torch.max((attn_flat[:selected]-attn_flat_v2[:selected])**2, 0): ", torch.max((attn_flat[:selected] - attn_flat_v2[:selected]) ** 2, 0), )