import torch import pointops from torch_scatter import ( scatter_max, scatter_mean, scatter_add, scatter_min, scatter_sum, ) torch.manual_seed(1) M = 800000 N = 35000 C = 96 h = 6 softmax_attn_flat = torch.rand(M, h).cuda() value = torch.rand(N, h, C // h).cuda() index_0 = torch.rand(M) index_0[index_0 < 0] = 0 index_0 = (index_0 * N).long().cuda() index_1 = torch.rand(M) index_1[index_1 < 0] = 0 index_1 = (index_1 * N).long().cuda() softmax_attn_flat.requires_grad = True value.requires_grad = True # value_flat = value[index_1] #[M, num_heads, C // num_heads] # x = (softmax_attn_flat.unsqueeze(-1) * value_flat).reshape(M, C) # x = scatter_sum(src=x, index=index_0, dim=0, dim_size=N) #[N, C] # loss = x.sum() # loss.backward() # print("x.shape: {}, x[:5,:10]: {}".format(x.shape, x[:5,:10])) # print("softmax_attn_flat.grad[:5, :10]: ", softmax_attn_flat.grad[:5, :10]) # print("value.grad[:5, :3, :5]: ", value.grad[:5, :3, :5]) # input() print("softmax_attn_flat.is_contiguous(): ", softmax_attn_flat.is_contiguous()) print("value.is_contiguous(): ", value.is_contiguous()) print("index_0.is_contiguous(): ", index_0.is_contiguous()) print("index_1.is_contiguous(): ", index_1.is_contiguous()) x_v2 = pointops.attention_step2( softmax_attn_flat.float(), value.float(), index_0.int(), index_1.int() ) x_v2 = x_v2.view(N, C) loss = x_v2.sum() loss.backward() print("x_v2.shape: {}, x_v2[:5,:10]: {}".format(x_v2.shape, x_v2[:5, :10])) print("softmax_attn_flat.grad[:5, :10]: ", softmax_attn_flat.grad[:5, :10]) print("value.grad[:5, :3, :5]: ", value.grad[:5, :3, :5]) input() print("((x-x_v2)**2 < 1e-8).all(): ", ((x - x_v2) ** 2 < 1e-8).all()) print("torch.max((x-x_v2)**2): ", torch.max((x - x_v2) ** 2))