Spaces:
Runtime error
Runtime error
File size: 2,115 Bytes
5df5de8 0877c16 5df5de8 f25bc2b 0877c16 5df5de8 f25bc2b da7db39 5df5de8 da7db39 5df5de8 f25bc2b 0877c16 949a319 0877c16 1187ba7 f25bc2b 0877c16 f25bc2b 0877c16 da7db39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from huggingface_hub import InferenceClient
# تحميل نموذج LLaMA من Hugging Face
client = InferenceClient("meta-llama/Llama-2-7b-chat-hf")
# قائمة السيناريوهات المتاحة
scenarios = {
"restaurant": "You are in a restaurant. Help the user order food in English.",
"airport": "You are at an airport. Help the user check in and find their gate.",
"hotel": "You are in a hotel. Help the user book a room.",
"shopping": "You are in a store. Help the user ask for prices and sizes.",
}
# دالة لاختيار السيناريو المناسب
def scenario_prompt(choice):
return scenarios.get(choice, "You are a language tutor AI. Help users practice real-life conversations.")
# دالة للمحادثة مع الذكاء الاصطناعي
def respond(
message,
system_message="You are a language tutor AI. Help users practice real-life conversations.",
max_tokens=512,
temperature=0.7,
):
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
):
token = message.choices[0].delta.content
response += token
yield response
# واجهة `Gradio` للتفاعل مع المستخدم
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"), # إصلاح التحذير باستخدام `type="messages"`
additional_inputs=[
gr.Dropdown(choices=list(scenarios.keys()), label="Choose a scenario", value="restaurant"),
gr.Textbox(value=scenario_prompt("restaurant"), label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|