|
"""
|
|
Surpported Models.
|
|
Supports:
|
|
- Open Source:LLaMA3, Qwen2.5, MiniCPM3, ChatGLM4
|
|
- Closed Source: ChatGPT, DeepSeek
|
|
"""
|
|
|
|
from transformers import pipeline
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig, GenerationConfig
|
|
import torch
|
|
import openai
|
|
import os
|
|
from openai import OpenAI
|
|
|
|
|
|
|
|
class BaseEngine:
|
|
def __init__(self, model_name_or_path: str):
|
|
self.name = None
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|
self.temperature = 0.2
|
|
self.top_p = 0.9
|
|
self.max_tokens = 1024
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def get_chat_response(self, prompt):
|
|
raise NotImplementedError
|
|
|
|
def set_hyperparameter(self, temperature: float = 0.2, top_p: float = 0.9, max_tokens: int = 1024):
|
|
self.temperature = temperature
|
|
self.top_p = top_p
|
|
self.max_tokens = max_tokens
|
|
|
|
class LLaMA(BaseEngine):
|
|
def __init__(self, model_name_or_path: str):
|
|
super().__init__(model_name_or_path)
|
|
self.name = "LLaMA"
|
|
self.model_id = model_name_or_path
|
|
self.pipeline = pipeline(
|
|
"text-generation",
|
|
model=self.model_id,
|
|
model_kwargs={"torch_dtype": torch.bfloat16},
|
|
device_map="auto",
|
|
)
|
|
self.terminators = [
|
|
self.pipeline.tokenizer.eos_token_id,
|
|
self.pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
|
]
|
|
|
|
def get_chat_response(self, prompt):
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
outputs = self.pipeline(
|
|
messages,
|
|
max_new_tokens=self.max_tokens,
|
|
eos_token_id=self.terminators,
|
|
do_sample=True,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
)
|
|
return outputs[0]["generated_text"][-1]['content'].strip()
|
|
|
|
class Qwen(BaseEngine):
|
|
def __init__(self, model_name_or_path: str):
|
|
super().__init__(model_name_or_path)
|
|
self.name = "Qwen"
|
|
self.model_id = model_name_or_path
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
torch_dtype="auto",
|
|
device_map="auto"
|
|
)
|
|
|
|
def get_chat_response(self, prompt):
|
|
messages = [
|
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
|
{"role": "user", "content": prompt}
|
|
]
|
|
text = self.tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.device)
|
|
generated_ids = self.model.generate(
|
|
**model_inputs,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
max_new_tokens=self.max_tokens
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
|
|
|
return response
|
|
|
|
class MiniCPM(BaseEngine):
|
|
def __init__(self, model_name_or_path: str):
|
|
super().__init__(model_name_or_path)
|
|
self.name = "MiniCPM"
|
|
self.model_id = model_name_or_path
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
trust_remote_code=True
|
|
)
|
|
|
|
def get_chat_response(self, prompt):
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": prompt}
|
|
]
|
|
model_inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(self.device)
|
|
model_outputs = self.model.generate(
|
|
model_inputs,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
max_new_tokens=self.max_tokens
|
|
)
|
|
output_token_ids = [
|
|
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
|
]
|
|
response = self.tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0].strip()
|
|
|
|
return response
|
|
|
|
class ChatGLM(BaseEngine):
|
|
def __init__(self, model_name_or_path: str):
|
|
super().__init__(model_name_or_path)
|
|
self.name = "ChatGLM"
|
|
self.model_id = model_name_or_path
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
low_cpu_mem_usage=True,
|
|
trust_remote_code=True
|
|
)
|
|
|
|
def get_chat_response(self, prompt):
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": prompt}
|
|
]
|
|
model_inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True, add_generation_prompt=True, tokenize=True).to(self.device)
|
|
model_outputs = self.model.generate(
|
|
**model_inputs,
|
|
temperature=self.temperature,
|
|
top_p=self.top_p,
|
|
max_new_tokens=self.max_tokens
|
|
)
|
|
model_outputs = model_outputs[:, model_inputs['input_ids'].shape[1]:]
|
|
response = self.tokenizer.batch_decode(model_outputs, skip_special_tokens=True)[0].strip()
|
|
|
|
return response
|
|
|
|
class OneKE(BaseEngine):
|
|
def __init__(self, model_name_or_path: str):
|
|
super().__init__(model_name_or_path)
|
|
self.name = "OneKE"
|
|
self.model_id = model_name_or_path
|
|
config = AutoConfig.from_pretrained(self.model_id, trust_remote_code=True)
|
|
quantization_config=BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
llm_int8_threshold=6.0,
|
|
llm_int8_has_fp16_weight=False,
|
|
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
bnb_4bit_use_double_quant=True,
|
|
bnb_4bit_quant_type="nf4",
|
|
)
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
config=config,
|
|
device_map="auto",
|
|
quantization_config=quantization_config,
|
|
torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
def get_chat_response(self, prompt):
|
|
system_prompt = '<<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n'
|
|
sintruct = '[INST] ' + system_prompt + prompt + '[/INST]'
|
|
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
|
|
input_ids = self.tokenizer.encode(sintruct, return_tensors="pt").to(self.device)
|
|
input_length = input_ids.size(1)
|
|
generation_output = self.model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True,pad_token_id=self.tokenizer.pad_token_id,eos_token_id=self.tokenizer.eos_token_id))
|
|
generation_output = generation_output.sequences[0]
|
|
generation_output = generation_output[input_length:]
|
|
response = self.tokenizer.decode(generation_output, skip_special_tokens=True)
|
|
|
|
return response
|
|
|
|
class ChatGPT(BaseEngine):
|
|
def __init__(self, model_name_or_path: str, api_key: str, base_url=openai.base_url):
|
|
self.name = "ChatGPT"
|
|
self.model = model_name_or_path
|
|
self.base_url = base_url
|
|
self.temperature = 0.2
|
|
self.top_p = 0.9
|
|
self.max_tokens = 4096
|
|
if api_key != "":
|
|
self.api_key = api_key
|
|
else:
|
|
self.api_key = os.environ["OPENAI_API_KEY"]
|
|
self.client = OpenAI(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
def get_chat_response(self, input):
|
|
response = self.client.chat.completions.create(
|
|
model=self.model,
|
|
messages=[
|
|
{"role": "user", "content": input},
|
|
],
|
|
stream=False,
|
|
temperature=self.temperature,
|
|
max_tokens=self.max_tokens,
|
|
stop=None
|
|
)
|
|
return response.choices[0].message.content
|
|
|
|
class DeepSeek(BaseEngine):
|
|
def __init__(self, model_name_or_path: str, api_key: str, base_url="https://api.deepseek.com"):
|
|
self.name = "DeepSeek"
|
|
self.model = model_name_or_path
|
|
self.base_url = base_url
|
|
self.temperature = 0.2
|
|
self.top_p = 0.9
|
|
self.max_tokens = 4096
|
|
if api_key != "":
|
|
self.api_key = api_key
|
|
else:
|
|
self.api_key = os.environ["DEEPSEEK_API_KEY"]
|
|
self.client = OpenAI(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
def get_chat_response(self, input):
|
|
response = self.client.chat.completions.create(
|
|
model=self.model,
|
|
messages=[
|
|
{"role": "user", "content": input},
|
|
],
|
|
stream=False,
|
|
temperature=self.temperature,
|
|
max_tokens=self.max_tokens,
|
|
stop=None
|
|
)
|
|
return response.choices[0].message.content
|
|
|
|
class LocalServer(BaseEngine):
|
|
def __init__(self, model_name_or_path: str, base_url="http://localhost:8000/v1"):
|
|
self.name = model_name_or_path.split('/')[-1]
|
|
self.model = model_name_or_path
|
|
self.base_url = base_url
|
|
self.temperature = 0.2
|
|
self.top_p = 0.9
|
|
self.max_tokens = 1024
|
|
self.api_key = "EMPTY_API_KEY"
|
|
self.client = OpenAI(api_key=self.api_key, base_url=self.base_url)
|
|
|
|
def get_chat_response(self, input):
|
|
try:
|
|
response = self.client.chat.completions.create(
|
|
model=self.model,
|
|
messages=[
|
|
{"role": "user", "content": input},
|
|
],
|
|
stream=False,
|
|
temperature=self.temperature,
|
|
max_tokens=self.max_tokens,
|
|
stop=None
|
|
)
|
|
return response.choices[0].message.content
|
|
except ConnectionError:
|
|
print("Error: Unable to connect to the server. Please check if the vllm service is running and the port is 8080.")
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|