Spaces:
Running
Running
Upload 2 files
Browse files- quran_multilingual_data.csv +0 -0
- streamlit_app.py +219 -0
quran_multilingual_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
streamlit_app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from langchain_community.document_loaders import DataFrameLoader
|
5 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
8 |
+
from langchain_core.runnables import RunnablePassthrough
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
# --- 1. Page Configuration ---
|
14 |
+
st.set_page_config(
|
15 |
+
page_title="Quranic Insight AI",
|
16 |
+
page_icon="🕋",
|
17 |
+
layout="wide",
|
18 |
+
initial_sidebar_state="expanded"
|
19 |
+
)
|
20 |
+
|
21 |
+
# --- 2. Custom CSS for Theming and Design ---
|
22 |
+
st.markdown("""
|
23 |
+
<style>
|
24 |
+
@import url('https://fonts.googleapis.com/css2?family=Merriweather:wght@300;400;700&family=Amiri&display=swap');
|
25 |
+
|
26 |
+
/* Main background with geometric pattern */
|
27 |
+
.stApp {
|
28 |
+
background-color: #1a1a1a; /* Dark Charcoal */
|
29 |
+
background-image: linear-gradient(315deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%),
|
30 |
+
linear-gradient(45deg, rgba(255, 255, 255, 0.02) 25%, transparent 25%);
|
31 |
+
background-size: 20px 20px;
|
32 |
+
color: #e0e0e0; /* Off-white text */
|
33 |
+
}
|
34 |
+
|
35 |
+
/* Main title font and color */
|
36 |
+
h1 {
|
37 |
+
font-family: 'Amiri', serif;
|
38 |
+
color: #d4af37; /* Soft Gold */
|
39 |
+
text-align: center;
|
40 |
+
padding-top: 2rem;
|
41 |
+
}
|
42 |
+
|
43 |
+
/* Subtitle style */
|
44 |
+
.subtitle {
|
45 |
+
font-family: 'Merriweather', serif;
|
46 |
+
color: #b0b0b0;
|
47 |
+
text-align: center;
|
48 |
+
font-size: 1.1rem;
|
49 |
+
}
|
50 |
+
|
51 |
+
/* Sidebar styling */
|
52 |
+
.st-emotion-cache-16txtl3 {
|
53 |
+
background-color: #212121;
|
54 |
+
}
|
55 |
+
|
56 |
+
/* Chat message styling */
|
57 |
+
.st-emotion-cache-1c7y2kd { /* Chat message container */
|
58 |
+
background-color: rgba(42, 42, 42, 0.8);
|
59 |
+
border: 1px solid #d4af37;
|
60 |
+
border-radius: 12px;
|
61 |
+
margin-bottom: 1rem;
|
62 |
+
}
|
63 |
+
|
64 |
+
/* Input box styling */
|
65 |
+
.st-emotion-cache-1jicfl2 {
|
66 |
+
background-color: #2a2a2a;
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Output formatting improvements */
|
70 |
+
.stMarkdown h3 {
|
71 |
+
color: #50c878; /* Mint Green for headings */
|
72 |
+
border-bottom: 2px solid #d4af37;
|
73 |
+
padding-bottom: 5px;
|
74 |
+
}
|
75 |
+
.stMarkdown blockquote {
|
76 |
+
background-color: rgba(212, 175, 55, 0.1);
|
77 |
+
border-left: 5px solid #d4af37;
|
78 |
+
padding: 0.5rem 1rem;
|
79 |
+
margin-left: 0;
|
80 |
+
border-radius: 5px;
|
81 |
+
}
|
82 |
+
</style>
|
83 |
+
""", unsafe_allow_html=True)
|
84 |
+
|
85 |
+
|
86 |
+
# --- 3. Cached Functions for Heavy Lifting ---
|
87 |
+
@st.cache_resource
|
88 |
+
def load_rag_chain():
|
89 |
+
load_dotenv()
|
90 |
+
|
91 |
+
llm = ChatOpenAI(model="gpt-4o", temperature=0.1)
|
92 |
+
embeddings = SentenceTransformerEmbeddings(model_name="paraphrase-multilingual-mpnet-base-v2")
|
93 |
+
|
94 |
+
csv_filename = 'quran_multilingual_data.csv'
|
95 |
+
if not os.path.exists(csv_filename):
|
96 |
+
st.error(f"CRITICAL ERROR: The data file '{csv_filename}' was not found.")
|
97 |
+
st.stop()
|
98 |
+
|
99 |
+
df = pd.read_csv(csv_filename)
|
100 |
+
df.fillna("", inplace=True)
|
101 |
+
|
102 |
+
df['page_content'] = "Reference: " + df['reference'].astype(str) + "\n" + \
|
103 |
+
"Urdu Translation 1: " + df['translation_maududi'] + "\n" + \
|
104 |
+
"Urdu Translation 2: " + df['translation_qadri'] + "\n" + \
|
105 |
+
"English Translation: " + df['translation_english']
|
106 |
+
|
107 |
+
loader = DataFrameLoader(df, page_content_column='page_content')
|
108 |
+
documents = loader.load()
|
109 |
+
|
110 |
+
persist_directory = "./quran_multilingual_db"
|
111 |
+
if os.path.exists(persist_directory):
|
112 |
+
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
113 |
+
else:
|
114 |
+
with st.spinner("Creating new multilingual database. This might take a few minutes..."):
|
115 |
+
vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=persist_directory)
|
116 |
+
|
117 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k': 7})
|
118 |
+
|
119 |
+
# --- New and Improved Prompt Template for Better Formatting ---
|
120 |
+
prompt_template = """
|
121 |
+
You are an expert and respectful Quranic Assistant. Your task is to follow a strict, step-by-step process to answer the user's question based ONLY on the context, using precise Markdown formatting.
|
122 |
+
|
123 |
+
**Your Thought Process (Follow these steps internally):**
|
124 |
+
1. **Step 1: Identify Language.** Analyze the user's `Question` to determine if it is in English or Roman Urdu. This decision is critical and will control the language of your entire response.
|
125 |
+
2. **Step 2: Synthesize a Summary.** Based on the language identified in Step 1, carefully read the user's question and understand it and then read the `Context` and formulate a 3-4 line summary that directly answers the `Question`.
|
126 |
+
3. **Step 3: Format Detailed Points.** Create a numbered list of key points from the `Context`. For each point, you must follow these sub-rules precisely:
|
127 |
+
- **Sub-rule 3a:** If the identified language was English, you MUST use the "English Translation" from the context for the `Translation:` field.
|
128 |
+
- **Sub-rule 3b:** If the identified language was Roman Urdu, you MUST use one of the "Urdu Translation" texts from the context for the `Translation:` field.
|
129 |
+
- **Sub-rule 3c:** The `Explanation:` must be in the same language as the `Question`.
|
130 |
+
|
131 |
+
---
|
132 |
+
|
133 |
+
### Detailed Points
|
134 |
+
(Create a numbered list of key points below.)
|
135 |
+
|
136 |
+
1. **Translation:**
|
137 |
+
> (The appropriate translation text goes here, inside a blockquote.)
|
138 |
+
**Reference:** `[The verse reference, e.g., 2:153]`
|
139 |
+
|
140 |
+
**Explanation:** (Your 1-2 line explanation for this point goes here.)
|
141 |
+
|
142 |
+
2. **Translation:**
|
143 |
+
> (The second translation text goes here.)
|
144 |
+
**Reference:** `[The second verse reference]`
|
145 |
+
|
146 |
+
**Explanation:** (The explanation for the second point.)
|
147 |
+
|
148 |
+
(and so on...Try to give as much points as you can generate)
|
149 |
+
|
150 |
+
**Context from Database:**
|
151 |
+
{context}
|
152 |
+
|
153 |
+
**User's Question:**
|
154 |
+
{question}
|
155 |
+
|
156 |
+
**Your Final Answer (Strictly follow the Markdown format above):**
|
157 |
+
"""
|
158 |
+
prompt = ChatPromptTemplate.from_template(prompt_template)
|
159 |
+
|
160 |
+
rag_chain = (
|
161 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
162 |
+
| prompt
|
163 |
+
| llm
|
164 |
+
| StrOutputParser()
|
165 |
+
)
|
166 |
+
return rag_chain
|
167 |
+
|
168 |
+
# --- 4. Main App Interface ---
|
169 |
+
|
170 |
+
# Load the RAG chain (fast due to caching)
|
171 |
+
rag_chain = load_rag_chain()
|
172 |
+
|
173 |
+
# Sidebar for information
|
174 |
+
with st.sidebar:
|
175 |
+
st.title("About Quranic Insight AI")
|
176 |
+
st.markdown("""
|
177 |
+
This is an AI-powered assistant designed to help you explore the teachings of the Holy Quran.
|
178 |
+
|
179 |
+
**How it works:**
|
180 |
+
1. Ask a question in English or Roman Urdu.
|
181 |
+
2. The AI searches through multiple translations of the Quran to find the most relevant verses.
|
182 |
+
3. It then uses a powerful language model to generate a structured and informative answer based on those verses.
|
183 |
+
|
184 |
+
**Data Sources:**
|
185 |
+
- Arabic Text: Tanzil.net
|
186 |
+
- Urdu Translations: Maududi & Tahir-ul-Qadri
|
187 |
+
- English Translation: Abdullah Yusuf Ali
|
188 |
+
""")
|
189 |
+
st.info("This is an experimental AI project. Always consult with a qualified Islamic scholar for definitive religious guidance.")
|
190 |
+
|
191 |
+
# Main page title
|
192 |
+
st.title("Quranic Insight AI | قرآنی معاون")
|
193 |
+
st.markdown("<p class='subtitle'>Your AI assistant for exploring the Quran</p>", unsafe_allow_html=True)
|
194 |
+
|
195 |
+
# Initialize chat history
|
196 |
+
if "messages" not in st.session_state:
|
197 |
+
st.session_state.messages = [{"role": "assistant", "content": "As-salamu alaykum! How can I help you explore the Quran today?"}]
|
198 |
+
|
199 |
+
# Display chat messages from history on app rerun
|
200 |
+
for message in st.session_state.messages:
|
201 |
+
with st.chat_message(message["role"]):
|
202 |
+
st.markdown(message["content"])
|
203 |
+
|
204 |
+
# Accept user input
|
205 |
+
if prompt := st.chat_input("Ask a question about the Quran..."):
|
206 |
+
# Add user message to chat history
|
207 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
208 |
+
# Display user message in chat message container
|
209 |
+
with st.chat_message("user"):
|
210 |
+
st.markdown(prompt)
|
211 |
+
|
212 |
+
# Display assistant response in chat message container
|
213 |
+
with st.chat_message("assistant"):
|
214 |
+
with st.spinner("Analyzing verses..."):
|
215 |
+
response = rag_chain.invoke(prompt)
|
216 |
+
st.markdown(response, unsafe_allow_html=True)
|
217 |
+
|
218 |
+
# Add assistant response to chat history
|
219 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|