Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,91 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from audiorecorder import audiorecorder
|
4 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
5 |
-
import requests
|
6 |
-
from transformers import pipeline
|
7 |
-
from gtts import gTTS
|
8 |
-
import io
|
9 |
-
|
10 |
-
# Load environment variables (if any)
|
11 |
-
load_dotenv()
|
12 |
-
|
13 |
-
user_id = "1" # example user id
|
14 |
-
|
15 |
-
# Initialize the wav2vec2 model for Urdu speech-to-text
|
16 |
-
pipe = pipeline("automatic-speech-recognition", model="kingabzpro/wav2vec2-large-xls-r-300m-Urdu")
|
17 |
-
|
18 |
-
def get_response(user_input):
|
19 |
-
'''
|
20 |
-
Takes user_input in English and invokes the infer API for response.
|
21 |
-
|
22 |
-
Parameters:
|
23 |
-
user_input (string): User Query in English.
|
24 |
-
Returns:
|
25 |
-
res (string): Response from the LLM.
|
26 |
-
'''
|
27 |
-
url = f"
|
28 |
-
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
29 |
-
data = {"user_input": user_input}
|
30 |
-
response = requests.post(url, headers=headers, data=data)
|
31 |
-
res = response.json()
|
32 |
-
return res["data"]
|
33 |
-
|
34 |
-
|
35 |
-
def text_to_speech(text, lang='ur'):
|
36 |
-
'''
|
37 |
-
Converts text to speech using gTTS.
|
38 |
-
|
39 |
-
Parameters:
|
40 |
-
text (string): Text to be converted to speech.
|
41 |
-
lang (string): Language for the speech synthesis. Default is 'ur' (Urdu).
|
42 |
-
Returns:
|
43 |
-
response_audio_io (BytesIO): BytesIO object containing the audio data.
|
44 |
-
'''
|
45 |
-
tts = gTTS(text, lang=lang)
|
46 |
-
response_audio_io = io.BytesIO()
|
47 |
-
tts.write_to_fp(response_audio_io)
|
48 |
-
response_audio_io.seek(0)
|
49 |
-
return response_audio_io
|
50 |
-
|
51 |
-
|
52 |
-
st.set_page_config(page_title="Urdu Virtual Assistant", page_icon="🤖") # set the page title and icon
|
53 |
-
|
54 |
-
col1, col2 = st.columns([1, 5]) # Adjust the ratio to control the logo and title sizes
|
55 |
-
|
56 |
-
# Display the logo in the first column
|
57 |
-
with col1:
|
58 |
-
st.image("bolo_logo-removebg-preview.png", width=100) # Adjust the width as needed
|
59 |
-
|
60 |
-
# Display the title in the second column
|
61 |
-
with col2:
|
62 |
-
st.title("Urdu Virtual Assistant") # set the main title of the application
|
63 |
-
st.write("This application is a comprehensive speech-to-speech model designed to understand and respond in Urdu. It not only handles natural conversations but also has the capability to access and provide real-time information by integrating with the Tavily search engine. Whether you're asking for the weather or engaging in everyday dialogue, this assistant delivers accurate and context-aware responses, all in Urdu.")
|
64 |
-
|
65 |
-
# Add a text input box
|
66 |
-
audio = audiorecorder()
|
67 |
-
|
68 |
-
if len(audio) > 0:
|
69 |
-
# Save the audio to a file
|
70 |
-
audio.export("audio.wav", format="wav")
|
71 |
-
|
72 |
-
# Convert audio to text using the wav2vec2 model
|
73 |
-
with open("audio.wav", "rb") as f:
|
74 |
-
audio_bytes = f.read()
|
75 |
-
|
76 |
-
# Process the audio file
|
77 |
-
result = pipe("audio.wav")
|
78 |
-
user_query = result["text"]
|
79 |
-
|
80 |
-
with st.chat_message("Human"): # create the message box for human input
|
81 |
-
st.audio(audio.export().read()) # display the audio player
|
82 |
-
st.markdown(user_query)
|
83 |
-
|
84 |
-
# Get response from the LLM
|
85 |
-
response_text = get_response(user_input=user_query)
|
86 |
-
response_audio = text_to_speech(response_text, lang='ur')
|
87 |
-
|
88 |
-
# Play the generated speech in the app
|
89 |
-
with st.chat_message("AI"):
|
90 |
-
st.audio(response_audio.read(), format='audio/mp3')
|
91 |
st.markdown(response_text)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from audiorecorder import audiorecorder
|
4 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
5 |
+
import requests
|
6 |
+
from transformers import pipeline
|
7 |
+
from gtts import gTTS
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Load environment variables (if any)
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
user_id = "1" # example user id
|
14 |
+
|
15 |
+
# Initialize the wav2vec2 model for Urdu speech-to-text
|
16 |
+
pipe = pipeline("automatic-speech-recognition", model="kingabzpro/wav2vec2-large-xls-r-300m-Urdu")
|
17 |
+
|
18 |
+
def get_response(user_input):
|
19 |
+
'''
|
20 |
+
Takes user_input in English and invokes the infer API for response.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
user_input (string): User Query in English.
|
24 |
+
Returns:
|
25 |
+
res (string): Response from the LLM.
|
26 |
+
'''
|
27 |
+
url = f"http://127.0.0.1:8000/infer/{user_id}"
|
28 |
+
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
29 |
+
data = {"user_input": user_input}
|
30 |
+
response = requests.post(url, headers=headers, data=data)
|
31 |
+
res = response.json()
|
32 |
+
return res["data"]
|
33 |
+
|
34 |
+
|
35 |
+
def text_to_speech(text, lang='ur'):
|
36 |
+
'''
|
37 |
+
Converts text to speech using gTTS.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
text (string): Text to be converted to speech.
|
41 |
+
lang (string): Language for the speech synthesis. Default is 'ur' (Urdu).
|
42 |
+
Returns:
|
43 |
+
response_audio_io (BytesIO): BytesIO object containing the audio data.
|
44 |
+
'''
|
45 |
+
tts = gTTS(text, lang=lang)
|
46 |
+
response_audio_io = io.BytesIO()
|
47 |
+
tts.write_to_fp(response_audio_io)
|
48 |
+
response_audio_io.seek(0)
|
49 |
+
return response_audio_io
|
50 |
+
|
51 |
+
|
52 |
+
st.set_page_config(page_title="Urdu Virtual Assistant", page_icon="🤖") # set the page title and icon
|
53 |
+
|
54 |
+
col1, col2 = st.columns([1, 5]) # Adjust the ratio to control the logo and title sizes
|
55 |
+
|
56 |
+
# Display the logo in the first column
|
57 |
+
with col1:
|
58 |
+
st.image("bolo_logo-removebg-preview.png", width=100) # Adjust the width as needed
|
59 |
+
|
60 |
+
# Display the title in the second column
|
61 |
+
with col2:
|
62 |
+
st.title("Urdu Virtual Assistant") # set the main title of the application
|
63 |
+
st.write("This application is a comprehensive speech-to-speech model designed to understand and respond in Urdu. It not only handles natural conversations but also has the capability to access and provide real-time information by integrating with the Tavily search engine. Whether you're asking for the weather or engaging in everyday dialogue, this assistant delivers accurate and context-aware responses, all in Urdu.")
|
64 |
+
|
65 |
+
# Add a text input box
|
66 |
+
audio = audiorecorder()
|
67 |
+
|
68 |
+
if len(audio) > 0:
|
69 |
+
# Save the audio to a file
|
70 |
+
audio.export("audio.wav", format="wav")
|
71 |
+
|
72 |
+
# Convert audio to text using the wav2vec2 model
|
73 |
+
with open("audio.wav", "rb") as f:
|
74 |
+
audio_bytes = f.read()
|
75 |
+
|
76 |
+
# Process the audio file
|
77 |
+
result = pipe("audio.wav")
|
78 |
+
user_query = result["text"]
|
79 |
+
|
80 |
+
with st.chat_message("Human"): # create the message box for human input
|
81 |
+
st.audio(audio.export().read()) # display the audio player
|
82 |
+
st.markdown(user_query)
|
83 |
+
|
84 |
+
# Get response from the LLM
|
85 |
+
response_text = get_response(user_input=user_query)
|
86 |
+
response_audio = text_to_speech(response_text, lang='ur')
|
87 |
+
|
88 |
+
# Play the generated speech in the app
|
89 |
+
with st.chat_message("AI"):
|
90 |
+
st.audio(response_audio.read(), format='audio/mp3')
|
91 |
st.markdown(response_text)
|