Spaces:
Paused
Paused
File size: 2,913 Bytes
226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c dbc99da 226475c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import torch
from transformers import pipeline
device="cpu"
pipe = pipeline(
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
)
def translate(audio):
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
return outputs["text"]
from transformers import BarkModel
from transformers import AutoProcessor
model = BarkModel.from_pretrained("suno/bark-small")
processor = AutoProcessor.from_pretrained("suno/bark")
model = model.to(device)
synthesised_rate = model.generation_config.sample_rate
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
inputs = processor(text_prompt, voice_preset=voice_preset)
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
#print(speech_output[0].cpu().numpy())
return speech_output
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
import numpy as np
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
translated_text = translate(audio)
#print(translated_text)
synthesised_speech = synthesise(translated_text,voice_preset)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
#print(synthesised_speech)
return synthesised_rate , synthesised_speech
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset)
return synthesised_rate,synthesised_speech.T
title = "Multilanguage to Chinese(mandarin) Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech:

"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch() |