Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,35 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
device="cpu"
|
|
|
5 |
pipe = pipeline(
|
6 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
7 |
)
|
8 |
-
|
9 |
-
def translate(audio):
|
10 |
-
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
11 |
-
return outputs["text"]
|
12 |
-
|
13 |
-
from transformers import BarkModel
|
14 |
-
from transformers import AutoProcessor
|
15 |
-
model = BarkModel.from_pretrained("suno/bark-small")
|
16 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
17 |
-
|
18 |
model = model.to(device)
|
19 |
synthesised_rate = model.generation_config.sample_rate
|
20 |
|
21 |
-
|
|
|
|
|
22 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
23 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
24 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
25 |
-
#print(speech_output[0].cpu().numpy())
|
26 |
return speech_output
|
27 |
-
|
28 |
-
|
29 |
def speech_to_speech_translation(audio):
|
30 |
translated_text = translate(audio)
|
31 |
synthesised_speech = synthesise(translated_text)
|
32 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
33 |
return 16000, synthesised_speech
|
34 |
-
|
35 |
-
import numpy as np
|
36 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
37 |
translated_text = translate(audio)
|
38 |
-
#print(translated_text)
|
39 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
40 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
41 |
-
#print(synthesised_speech)
|
42 |
return synthesised_rate , synthesised_speech
|
43 |
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
|
44 |
synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset)
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
from transformers import pipeline
|
4 |
+
from transformers import BarkModel
|
5 |
+
from transformers import AutoProcessor
|
6 |
|
7 |
device="cpu"
|
8 |
+
|
9 |
pipe = pipeline(
|
10 |
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
|
11 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
processor = AutoProcessor.from_pretrained("suno/bark")
|
13 |
+
model = BarkModel.from_pretrained("suno/bark-small")
|
14 |
model = model.to(device)
|
15 |
synthesised_rate = model.generation_config.sample_rate
|
16 |
|
17 |
+
def translate(audio):
|
18 |
+
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
|
19 |
+
return outputs["text"]
|
20 |
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
|
21 |
inputs = processor(text_prompt, voice_preset=voice_preset)
|
22 |
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
|
|
|
23 |
return speech_output
|
|
|
|
|
24 |
def speech_to_speech_translation(audio):
|
25 |
translated_text = translate(audio)
|
26 |
synthesised_speech = synthesise(translated_text)
|
27 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
28 |
return 16000, synthesised_speech
|
|
|
|
|
29 |
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
|
30 |
translated_text = translate(audio)
|
|
|
31 |
synthesised_speech = synthesise(translated_text,voice_preset)
|
32 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
|
|
33 |
return synthesised_rate , synthesised_speech
|
34 |
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
|
35 |
synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset)
|