import torch import numpy as np from transformers import pipeline from transformers import BarkModel from transformers import AutoProcessor device="cpu" pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v2", device=device ) processor = AutoProcessor.from_pretrained("suno/bark") model = BarkModel.from_pretrained("suno/bark") model = model.to(device) synthesised_rate = model.generation_config.sample_rate def translate(audio): outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"}) return outputs["text"] def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"): inputs = processor(text_prompt, voice_preset=voice_preset) speech_output = model.generate(**inputs.to(device),pad_token_id=10000) return speech_output def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"): translated_text = translate(audio) synthesised_speech = synthesise(translated_text,voice_preset) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return synthesised_rate , synthesised_speech def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"): synthesised_rate,synthesised_speech = speech_to_speech_translation(audio,voice_preset) return synthesised_rate,synthesised_speech.T title = "Multilanguage to Chinese(mandarin) Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ examples = [ ["/mama (1).mp3", None], ["/mama (2).mp3", None], ["/mama (3).mp3", None], ["/mama (4).mp3", None], ["/mama (5).mp3", None], ["/mama (6).mp3", None], ["/mama (7).mp3", None], ["/mama (8).mp3", None], ] import gradio as gr demo = gr.Blocks() Muti_translate=gr.Interface( fn=speech_to_speech_translation_fix, inputs=[ gr.Audio(label="Upload Speech", source="upload", type="numpy"), gr.Audio(label="Record Speech", source="microphone", type="numpy"), ], outputs=[ gr.Audio(label="Generated Speech", type="numpy"), ], title=title, description=description, article=article, examples=examples, ) # mic_translate = gr.Interface( # fn=speech_to_speech_translation_fix, # inputs=gr.Audio(source="microphone", type="filepath"), # outputs=gr.Audio(label="Generated Speech", type="numpy"), # title=title, # description=description, # ) # file_translate = gr.Interface( # fn=speech_to_speech_translation_fix, # inputs=gr.Audio(source="upload", type="filepath"), # outputs=gr.Audio(label="Generated Speech", type="numpy"), # examples=examples, # title=title, # description=description, # ) with demo: # gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) gr.TabbedInterface([Muti_translate], ["Record or upload your speech"]) demo.launch(share=True)