Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import numpy as np
|
3 |
-
import joblib # use joblib instead of pickle
|
4 |
|
5 |
-
# Load model
|
6 |
-
model = joblib.load("log_reg_model.pkl")
|
7 |
|
8 |
-
|
9 |
-
st.
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
16 |
prediction = model.predict(input_data)[0]
|
17 |
-
|
18 |
-
if prediction == 0:
|
19 |
-
st.success("Sleep State: **Wakeup**")
|
20 |
-
else:
|
21 |
-
st.success("Sleep State: **Onset**")
|
|
|
1 |
import streamlit as st
|
2 |
+
import joblib
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
+
# Load your model
|
6 |
+
model = joblib.load("log_reg_model.pkl") # or "log_reg_model.pkl"
|
7 |
|
8 |
+
# Streamlit App UI
|
9 |
+
st.title("AI Sleep State Detector")
|
10 |
+
st.write("Predict sleep state (`onset` or `wakeup`) using step count and hour.")
|
11 |
|
12 |
+
# Input Features
|
13 |
+
step = st.number_input("Step count:", min_value=0, max_value=10000, value=0)
|
14 |
+
hour = st.slider("Hour of day (0–23):", min_value=0, max_value=23, value=0)
|
15 |
|
16 |
+
# Predict Button
|
17 |
+
if st.button("Predict Sleep State"):
|
18 |
+
input_data = np.array([[step, hour]])
|
19 |
prediction = model.predict(input_data)[0]
|
20 |
+
st.success(f"Predicted Sleep State: **{prediction}**")
|
|
|
|
|
|
|
|