File size: 5,694 Bytes
6d57bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import cv2
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go

# -------------------------------
# 1. Setup
# -------------------------------
st.set_page_config(page_title="Cricket Player Comparision", layout="centered")
st.title("🏏 Cricket Player Comparision Tool")

# -------------------------------
# 2. Load Data & Models
# -------------------------------
@st.cache_data
def load_dataset():
    return pd.read_csv("cric_final.csv")

@st.cache_resource
def load_assets():
    model = joblib.load("svc_face_classifier.pkl")
    encoder = joblib.load("label_encoder.pkl")
    detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
    return model, encoder, detector

df = load_dataset()
model, encoder, detector = load_assets()
formats = ["Test", "ODI", "T20", "IPL"]

# -------------------------------
# 3. Player Detection from Image
# -------------------------------
def detect_player(image_file, model, encoder, detector):
    try:
        img = Image.open(image_file).convert("RGB")
        img_np = np.array(img)
        gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
        faces = detector.detectMultiScale(gray, 1.3, 5)
        if not len(faces):
            return None, "No face detected"
        x, y, w, h = faces[0]
        face = cv2.resize(gray[y:y+h, x:x+w], (64, 64)).flatten().reshape(1, -1)
        label = model.predict(face)[0]
        name = encoder.inverse_transform([label])[0]
        return name, None
    except Exception as e:
        return None, str(e)

# -------------------------------
# 4. Player Stats Summary
# -------------------------------
def get_summary(player_row, formats):
    return {
        "Total Runs": sum(player_row.get(f'batting_Runs_{f}', 0) for f in formats),
        "Total Wickets": sum(player_row.get(f'bowling_{f}_Wickets', 0) for f in formats),
        "Best Strike Rate": max(player_row.get(f'batting_SR_{f}', 0) for f in formats)
    }

# -------------------------------
# 5. Upload Player Images
# -------------------------------
col1, col2 = st.columns(2)
with col1:
    img1 = st.file_uploader("Upload Player 1 Image", type=["jpg", "png", "jpeg"], key="img1")
with col2:
    img2 = st.file_uploader("Upload Player 2 Image", type=["jpg", "png", "jpeg"], key="img2")

p1_name, p2_name = None, None

if img1:
    p1_name, err1 = detect_player(img1, model, encoder, detector)
    if err1:
        st.error(f"Player 1 Error: {err1}")
    else:
        col1.image(img1, caption=f"Player 1: {p1_name}", width=200)

if img2:
    p2_name, err2 = detect_player(img2, model, encoder, detector)
    if err2:
        st.error(f"Player 2 Error: {err2}")
    else:
        col2.image(img2, caption=f"Player 2: {p2_name}", width=200)

if not (p1_name and p2_name):
    st.warning("Upload images for both players to load the data.")
    st.stop()

if p1_name not in df["Player"].values or p2_name not in df["Player"].values:
    st.error("One or both players are not in the dataset.")
    st.stop()

# -------------------------------
# 6. Stats Extraction
# -------------------------------
player1 = df[df["Player"] == p1_name].iloc[0]
player2 = df[df["Player"] == p2_name].iloc[0]
stats1 = get_summary(player1, formats)
stats2 = get_summary(player2, formats)

# -------------------------------
# 7. Display Summary Stats
# -------------------------------
st.subheader("πŸ“Š Player Summary")
col1, col2 = st.columns(2)
for col, stats in zip([col1, col2], [stats1, stats2]):
    col.metric("Total Runs", stats["Total Runs"])
    col.metric("Total Wickets", stats["Total Wickets"])
    col.metric("Best SR", round(stats["Best Strike Rate"], 2))

# -------------------------------
# 8. Visual Comparisons
# -------------------------------
st.markdown("## πŸ“ˆ Visual Comparison")

# Batting
bat_df = pd.DataFrame({
    "Format": formats,
    p1_name: [player1.get(f'batting_Runs_{f}', 0) for f in formats],
    p2_name: [player2.get(f'batting_Runs_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(bat_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Batting Runs"))

# Bowling
bowl_df = pd.DataFrame({
    "Format": formats,
    p1_name: [player1.get(f'bowling_{f}_Wickets', 0) for f in formats],
    p2_name: [player2.get(f'bowling_{f}_Wickets', 0) for f in formats]
})
st.plotly_chart(px.bar(bowl_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Bowling Wickets"))

# -------------------------------

# Strike Rate Comparison
sr_df = pd.DataFrame({
    "Format": formats,
    p1_name: [player1.get(f'batting_SR_{f}', 0) for f in formats],
    p2_name: [player2.get(f'batting_SR_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(sr_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Strike Rate Comparison"))

#---------------------------------
# 9. Match Distribution
# -------------------------------
for name, row, col, key_suffix in zip(
    [p1_name, p2_name], 
    [player1, player2], 
    [col1, col2], 
    ["player1", "player2"]
):
    values = [row.get(f"Matches_{f}", 0) for f in formats]
    fig = px.pie(
        values=values, 
        names=formats, 
        title=f"{name}'s Match Distribution"
    )
    col.plotly_chart(fig, key=f"pie_chart_{key_suffix}")  # πŸ‘ˆ Unique key

# 10. Milestones
# -------------------------------
st.subheader("πŸ† Milestones")
for fmt in formats:
    st.markdown(f"### {fmt}")
    col1, col2 = st.columns(2)
    for m in ["50s", "100s", "200s"]:
        col1.metric(f"{p1_name} {m}", player1.get(f"batting_{m}_{fmt}", 0))
        col2.metric(f"{p2_name} {m}", player2.get(f"batting_{m}_{fmt}", 0))