Spaces:
Sleeping
Sleeping
File size: 5,694 Bytes
6d57bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import cv2
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
# -------------------------------
# 1. Setup
# -------------------------------
st.set_page_config(page_title="Cricket Player Comparision", layout="centered")
st.title("π Cricket Player Comparision Tool")
# -------------------------------
# 2. Load Data & Models
# -------------------------------
@st.cache_data
def load_dataset():
return pd.read_csv("cric_final.csv")
@st.cache_resource
def load_assets():
model = joblib.load("svc_face_classifier.pkl")
encoder = joblib.load("label_encoder.pkl")
detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
return model, encoder, detector
df = load_dataset()
model, encoder, detector = load_assets()
formats = ["Test", "ODI", "T20", "IPL"]
# -------------------------------
# 3. Player Detection from Image
# -------------------------------
def detect_player(image_file, model, encoder, detector):
try:
img = Image.open(image_file).convert("RGB")
img_np = np.array(img)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
faces = detector.detectMultiScale(gray, 1.3, 5)
if not len(faces):
return None, "No face detected"
x, y, w, h = faces[0]
face = cv2.resize(gray[y:y+h, x:x+w], (64, 64)).flatten().reshape(1, -1)
label = model.predict(face)[0]
name = encoder.inverse_transform([label])[0]
return name, None
except Exception as e:
return None, str(e)
# -------------------------------
# 4. Player Stats Summary
# -------------------------------
def get_summary(player_row, formats):
return {
"Total Runs": sum(player_row.get(f'batting_Runs_{f}', 0) for f in formats),
"Total Wickets": sum(player_row.get(f'bowling_{f}_Wickets', 0) for f in formats),
"Best Strike Rate": max(player_row.get(f'batting_SR_{f}', 0) for f in formats)
}
# -------------------------------
# 5. Upload Player Images
# -------------------------------
col1, col2 = st.columns(2)
with col1:
img1 = st.file_uploader("Upload Player 1 Image", type=["jpg", "png", "jpeg"], key="img1")
with col2:
img2 = st.file_uploader("Upload Player 2 Image", type=["jpg", "png", "jpeg"], key="img2")
p1_name, p2_name = None, None
if img1:
p1_name, err1 = detect_player(img1, model, encoder, detector)
if err1:
st.error(f"Player 1 Error: {err1}")
else:
col1.image(img1, caption=f"Player 1: {p1_name}", width=200)
if img2:
p2_name, err2 = detect_player(img2, model, encoder, detector)
if err2:
st.error(f"Player 2 Error: {err2}")
else:
col2.image(img2, caption=f"Player 2: {p2_name}", width=200)
if not (p1_name and p2_name):
st.warning("Upload images for both players to load the data.")
st.stop()
if p1_name not in df["Player"].values or p2_name not in df["Player"].values:
st.error("One or both players are not in the dataset.")
st.stop()
# -------------------------------
# 6. Stats Extraction
# -------------------------------
player1 = df[df["Player"] == p1_name].iloc[0]
player2 = df[df["Player"] == p2_name].iloc[0]
stats1 = get_summary(player1, formats)
stats2 = get_summary(player2, formats)
# -------------------------------
# 7. Display Summary Stats
# -------------------------------
st.subheader("π Player Summary")
col1, col2 = st.columns(2)
for col, stats in zip([col1, col2], [stats1, stats2]):
col.metric("Total Runs", stats["Total Runs"])
col.metric("Total Wickets", stats["Total Wickets"])
col.metric("Best SR", round(stats["Best Strike Rate"], 2))
# -------------------------------
# 8. Visual Comparisons
# -------------------------------
st.markdown("## π Visual Comparison")
# Batting
bat_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'batting_Runs_{f}', 0) for f in formats],
p2_name: [player2.get(f'batting_Runs_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(bat_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Batting Runs"))
# Bowling
bowl_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'bowling_{f}_Wickets', 0) for f in formats],
p2_name: [player2.get(f'bowling_{f}_Wickets', 0) for f in formats]
})
st.plotly_chart(px.bar(bowl_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Bowling Wickets"))
# -------------------------------
# Strike Rate Comparison
sr_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'batting_SR_{f}', 0) for f in formats],
p2_name: [player2.get(f'batting_SR_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(sr_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Strike Rate Comparison"))
#---------------------------------
# 9. Match Distribution
# -------------------------------
for name, row, col, key_suffix in zip(
[p1_name, p2_name],
[player1, player2],
[col1, col2],
["player1", "player2"]
):
values = [row.get(f"Matches_{f}", 0) for f in formats]
fig = px.pie(
values=values,
names=formats,
title=f"{name}'s Match Distribution"
)
col.plotly_chart(fig, key=f"pie_chart_{key_suffix}") # π Unique key
# 10. Milestones
# -------------------------------
st.subheader("π Milestones")
for fmt in formats:
st.markdown(f"### {fmt}")
col1, col2 = st.columns(2)
for m in ["50s", "100s", "200s"]:
col1.metric(f"{p1_name} {m}", player1.get(f"batting_{m}_{fmt}", 0))
col2.metric(f"{p2_name} {m}", player2.get(f"batting_{m}_{fmt}", 0))
|