Cricket_playground / pages /2_player_comparison_images.py
zoya23's picture
Rename pages/player_comparison_images.py to pages/2_player_comparison_images.py
6445002 verified
raw
history blame
5.69 kB
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import cv2
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
# -------------------------------
# 1. Setup
# -------------------------------
st.set_page_config(page_title="Cricket Player Comparision", layout="centered")
st.title("🏏 Cricket Player Comparision Tool")
# -------------------------------
# 2. Load Data & Models
# -------------------------------
@st.cache_data
def load_dataset():
return pd.read_csv("cric_final.csv")
@st.cache_resource
def load_assets():
model = joblib.load("svc_face_classifier.pkl")
encoder = joblib.load("label_encoder.pkl")
detector = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
return model, encoder, detector
df = load_dataset()
model, encoder, detector = load_assets()
formats = ["Test", "ODI", "T20", "IPL"]
# -------------------------------
# 3. Player Detection from Image
# -------------------------------
def detect_player(image_file, model, encoder, detector):
try:
img = Image.open(image_file).convert("RGB")
img_np = np.array(img)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
faces = detector.detectMultiScale(gray, 1.3, 5)
if not len(faces):
return None, "No face detected"
x, y, w, h = faces[0]
face = cv2.resize(gray[y:y+h, x:x+w], (64, 64)).flatten().reshape(1, -1)
label = model.predict(face)[0]
name = encoder.inverse_transform([label])[0]
return name, None
except Exception as e:
return None, str(e)
# -------------------------------
# 4. Player Stats Summary
# -------------------------------
def get_summary(player_row, formats):
return {
"Total Runs": sum(player_row.get(f'batting_Runs_{f}', 0) for f in formats),
"Total Wickets": sum(player_row.get(f'bowling_{f}_Wickets', 0) for f in formats),
"Best Strike Rate": max(player_row.get(f'batting_SR_{f}', 0) for f in formats)
}
# -------------------------------
# 5. Upload Player Images
# -------------------------------
col1, col2 = st.columns(2)
with col1:
img1 = st.file_uploader("Upload Player 1 Image", type=["jpg", "png", "jpeg"], key="img1")
with col2:
img2 = st.file_uploader("Upload Player 2 Image", type=["jpg", "png", "jpeg"], key="img2")
p1_name, p2_name = None, None
if img1:
p1_name, err1 = detect_player(img1, model, encoder, detector)
if err1:
st.error(f"Player 1 Error: {err1}")
else:
col1.image(img1, caption=f"Player 1: {p1_name}", width=200)
if img2:
p2_name, err2 = detect_player(img2, model, encoder, detector)
if err2:
st.error(f"Player 2 Error: {err2}")
else:
col2.image(img2, caption=f"Player 2: {p2_name}", width=200)
if not (p1_name and p2_name):
st.warning("Upload images for both players to load the data.")
st.stop()
if p1_name not in df["Player"].values or p2_name not in df["Player"].values:
st.error("One or both players are not in the dataset.")
st.stop()
# -------------------------------
# 6. Stats Extraction
# -------------------------------
player1 = df[df["Player"] == p1_name].iloc[0]
player2 = df[df["Player"] == p2_name].iloc[0]
stats1 = get_summary(player1, formats)
stats2 = get_summary(player2, formats)
# -------------------------------
# 7. Display Summary Stats
# -------------------------------
st.subheader("πŸ“Š Player Summary")
col1, col2 = st.columns(2)
for col, stats in zip([col1, col2], [stats1, stats2]):
col.metric("Total Runs", stats["Total Runs"])
col.metric("Total Wickets", stats["Total Wickets"])
col.metric("Best SR", round(stats["Best Strike Rate"], 2))
# -------------------------------
# 8. Visual Comparisons
# -------------------------------
st.markdown("## πŸ“ˆ Visual Comparison")
# Batting
bat_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'batting_Runs_{f}', 0) for f in formats],
p2_name: [player2.get(f'batting_Runs_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(bat_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Batting Runs"))
# Bowling
bowl_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'bowling_{f}_Wickets', 0) for f in formats],
p2_name: [player2.get(f'bowling_{f}_Wickets', 0) for f in formats]
})
st.plotly_chart(px.bar(bowl_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Bowling Wickets"))
# -------------------------------
# Strike Rate Comparison
sr_df = pd.DataFrame({
"Format": formats,
p1_name: [player1.get(f'batting_SR_{f}', 0) for f in formats],
p2_name: [player2.get(f'batting_SR_{f}', 0) for f in formats]
})
st.plotly_chart(px.bar(sr_df, x="Format", y=[p1_name, p2_name], barmode="group", title="Strike Rate Comparison"))
#---------------------------------
# 9. Match Distribution
# -------------------------------
for name, row, col, key_suffix in zip(
[p1_name, p2_name],
[player1, player2],
[col1, col2],
["player1", "player2"]
):
values = [row.get(f"Matches_{f}", 0) for f in formats]
fig = px.pie(
values=values,
names=formats,
title=f"{name}'s Match Distribution"
)
col.plotly_chart(fig, key=f"pie_chart_{key_suffix}") # πŸ‘ˆ Unique key
# 10. Milestones
# -------------------------------
st.subheader("πŸ† Milestones")
for fmt in formats:
st.markdown(f"### {fmt}")
col1, col2 = st.columns(2)
for m in ["50s", "100s", "200s"]:
col1.metric(f"{p1_name} {m}", player1.get(f"batting_{m}_{fmt}", 0))
col2.metric(f"{p2_name} {m}", player2.get(f"batting_{m}_{fmt}", 0))