Spaces:
Sleeping
Sleeping
File size: 2,475 Bytes
0028678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import streamlit as st
import numpy as np
from sklearn.datasets import make_circles
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Set Streamlit page config
st.set_page_config(page_title="ML Playground", layout="centered")
st.title("π§ TensorFlow Playground Clone")
st.markdown("Train a simple neural network on a synthetic dataset like circles")
# Sidebar controls
st.sidebar.header("Model Settings")
# Dataset
dataset = st.sidebar.selectbox("Dataset", ["Circle"])
n_samples = st.sidebar.slider("Number of Samples", 100, 1000, 300)
# Model settings
layers = st.sidebar.text_input("Network Shape (comma-separated)", "4,2")
activation = st.sidebar.selectbox("Activation", ["relu", "tanh", "sigmoid"])
learning_rate = st.sidebar.slider("Learning Rate", 0.001, 0.1, 0.03, step=0.001)
epochs = st.sidebar.slider("Epochs", 10, 200, 50)
# Generate dataset
X, y = make_circles(n_samples=n_samples, factor=0.5, noise=0.05, random_state=0)
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
# Build model
model = Sequential()
layer_sizes = [int(n.strip()) for n in layers.split(",") if n.strip().isdigit()]
input_dim = X.shape[1]
# Input + hidden layers
model.add(Dense(layer_sizes[0], input_dim=input_dim, activation=activation))
for size in layer_sizes[1:]:
model.add(Dense(size, activation=activation))
# Output layer
model.add(Dense(1, activation='sigmoid'))
optimizer = Adam(learning_rate=learning_rate)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Training
with st.spinner("Training model..."):
history = model.fit(X_train, y_train, epochs=epochs, verbose=0, validation_data=(X_test, y_test))
# Plotting
fig, ax = plt.subplots()
ax.plot(history.history['accuracy'], label='Train Accuracy')
ax.plot(history.history['val_accuracy'], label='Val Accuracy')
ax.set_title("Training Progress")
ax.set_xlabel("Epoch")
ax.set_ylabel("Accuracy")
ax.legend()
st.pyplot(fig)
# Final Accuracy
train_acc = model.evaluate(X_train, y_train, verbose=0)[1]
test_acc = model.evaluate(X_test, y_test, verbose=0)[1]
st.success(f"β
Final Training Accuracy: {train_acc:.2f}")
st.success(f"β
Final Testing Accuracy: {test_acc:.2f}")
|