Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,83 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
-
|
|
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
from sklearn.preprocessing import StandardScaler
|
6 |
from tensorflow.keras.models import Sequential
|
7 |
from tensorflow.keras.layers import Dense
|
8 |
from tensorflow.keras.optimizers import Adam
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
|
11 |
-
# Set Streamlit page config
|
12 |
-
st.set_page_config(page_title="ML Playground", layout="centered")
|
13 |
|
|
|
14 |
st.title("🧠 TensorFlow Playground Clone")
|
15 |
-
st.markdown("Train a simple neural network on a synthetic dataset like circles")
|
16 |
|
17 |
# Sidebar controls
|
18 |
-
st.sidebar.header("
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
activation = st.sidebar.selectbox("Activation", ["relu", "tanh", "sigmoid"])
|
27 |
-
learning_rate = st.sidebar.slider("Learning Rate", 0.001, 0.1, 0.03, step=0.001)
|
28 |
-
epochs = st.sidebar.slider("Epochs", 10, 200, 50)
|
29 |
|
30 |
# Generate dataset
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
X = StandardScaler().fit_transform(X)
|
33 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=
|
34 |
|
35 |
# Build model
|
36 |
model = Sequential()
|
37 |
layer_sizes = [int(n.strip()) for n in layers.split(",") if n.strip().isdigit()]
|
38 |
-
input_dim =
|
39 |
-
|
40 |
-
# Input + hidden layers
|
41 |
-
model.add(Dense(layer_sizes[0], input_dim=input_dim, activation=activation))
|
42 |
for size in layer_sizes[1:]:
|
43 |
model.add(Dense(size, activation=activation))
|
|
|
|
|
44 |
|
45 |
-
# Output layer
|
46 |
-
model.add(Dense(1, activation='sigmoid'))
|
47 |
-
|
48 |
-
optimizer = Adam(learning_rate=learning_rate)
|
49 |
-
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
|
50 |
-
|
51 |
-
# Training
|
52 |
with st.spinner("Training model..."):
|
53 |
-
history = model.fit(X_train, y_train,
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
fig, ax = plt.subplots()
|
57 |
-
ax.plot(history.history[
|
58 |
-
ax.plot(history.history[
|
59 |
-
ax.set_title("
|
60 |
ax.set_xlabel("Epoch")
|
61 |
ax.set_ylabel("Accuracy")
|
62 |
ax.legend()
|
63 |
st.pyplot(fig)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.datasets import make_circles, make_moons, make_classification
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.preprocessing import StandardScaler
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
from tensorflow.keras.layers import Dense
|
10 |
from tensorflow.keras.optimizers import Adam
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
st.set_page_config(page_title="TF Playground", layout="wide")
|
13 |
st.title("🧠 TensorFlow Playground Clone")
|
|
|
14 |
|
15 |
# Sidebar controls
|
16 |
+
st.sidebar.header("1. Dataset Options")
|
17 |
+
dataset = st.sidebar.selectbox("Select Dataset", ["circle", "moons", "linear","guassian"])
|
18 |
+
noise = st.sidebar.slider("Noise Level", 0.0, 0.5, 0.1, 0.01)
|
19 |
+
perc_train = st.sidebar.slider("Train/Test Split %", 10, 90, 50)
|
20 |
|
21 |
+
st.sidebar.header("2. Network Settings")
|
22 |
+
layers = st.sidebar.text_input("Neural Network Layers (e.g., 4,2)", "4,2")
|
23 |
+
activation = st.sidebar.selectbox("Activation Function", ["tanh", "relu", "sigmoid"])
|
24 |
+
learning_rate = st.sidebar.slider("Learning Rate", 0.001, 0.1, 0.03)
|
25 |
+
epochs = st.sidebar.slider("Epochs", 10, 300, 100)
|
26 |
+
batch_size = st.sidebar.slider("Batch Size", 1, 100, 10)
|
|
|
|
|
|
|
27 |
|
28 |
# Generate dataset
|
29 |
+
if dataset == "circle":
|
30 |
+
X, y = make_circles(n_samples=500, noise=noise, factor=0.5, random_state=0)
|
31 |
+
elif dataset == "moons":
|
32 |
+
X, y = make_moons(n_samples=500, noise=noise, random_state=0)
|
33 |
+
else:
|
34 |
+
X, y = make_classification(n_samples=500, n_features=2, n_redundant=0, n_clusters_per_class=1,
|
35 |
+
n_informative=2, n_classes=2, class_sep=1.0, flip_y=noise, random_state=0)
|
36 |
+
|
37 |
X = StandardScaler().fit_transform(X)
|
38 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(100 - perc_train)/100, random_state=42)
|
39 |
|
40 |
# Build model
|
41 |
model = Sequential()
|
42 |
layer_sizes = [int(n.strip()) for n in layers.split(",") if n.strip().isdigit()]
|
43 |
+
model.add(Dense(layer_sizes[0], input_dim=2, activation=activation))
|
|
|
|
|
|
|
44 |
for size in layer_sizes[1:]:
|
45 |
model.add(Dense(size, activation=activation))
|
46 |
+
model.add(Dense(1, activation="sigmoid"))
|
47 |
+
model.compile(optimizer=Adam(learning_rate=learning_rate), loss="binary_crossentropy", metrics=["accuracy"])
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with st.spinner("Training model..."):
|
50 |
+
history = model.fit(X_train, y_train, validation_data=(X_test, y_test),
|
51 |
+
epochs=epochs, batch_size=batch_size, verbose=0)
|
52 |
+
|
53 |
+
train_acc = model.evaluate(X_train, y_train, verbose=0)[1]
|
54 |
+
test_acc = model.evaluate(X_test, y_test, verbose=0)[1]
|
55 |
+
st.success(f"Train Accuracy: {train_acc:.3f} | Test Accuracy: {test_acc:.3f}")
|
56 |
|
57 |
+
# Accuracy plot
|
58 |
fig, ax = plt.subplots()
|
59 |
+
ax.plot(history.history["accuracy"], label="Train")
|
60 |
+
ax.plot(history.history["val_accuracy"], label="Test")
|
61 |
+
ax.set_title("Accuracy")
|
62 |
ax.set_xlabel("Epoch")
|
63 |
ax.set_ylabel("Accuracy")
|
64 |
ax.legend()
|
65 |
st.pyplot(fig)
|
66 |
|
67 |
+
# Decision boundary
|
68 |
+
def plot_boundary(X, y, model, ax):
|
69 |
+
h = 0.02
|
70 |
+
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
71 |
+
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
72 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
73 |
+
np.arange(y_min, y_max, h))
|
74 |
+
grid = np.c_[xx.ravel(), yy.ravel()]
|
75 |
+
preds = model.predict(grid)
|
76 |
+
preds = preds.reshape(xx.shape)
|
77 |
+
ax.contourf(xx, yy, preds, cmap=plt.cm.RdBu, alpha=0.6)
|
78 |
+
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu, edgecolors='k')
|
79 |
+
|
80 |
+
fig2, ax2 = plt.subplots()
|
81 |
+
plot_boundary(X_test, y_test, model, ax2)
|
82 |
+
ax2.set_title("Decision Boundary")
|
83 |
+
st.pyplot(fig2)
|