Spaces:
Sleeping
Sleeping
Update agents/language_agent.py
Browse files- agents/language_agent.py +3 -14
agents/language_agent.py
CHANGED
@@ -1,21 +1,10 @@
|
|
1 |
-
from transformers import
|
2 |
from langchain.llms import HuggingFacePipeline
|
3 |
from langchain.chains import RetrievalQA
|
4 |
from agents.retriever_agent import create_vectorstore
|
5 |
|
6 |
def generate_brief(question):
|
7 |
-
|
8 |
-
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
11 |
-
|
12 |
-
pipe = pipeline(
|
13 |
-
"text2text-generation",
|
14 |
-
model=model,
|
15 |
-
tokenizer=tokenizer,
|
16 |
-
max_length=512,
|
17 |
-
temperature=0.7
|
18 |
-
)
|
19 |
|
20 |
llm = HuggingFacePipeline(pipeline=pipe)
|
21 |
|
@@ -23,4 +12,4 @@ def generate_brief(question):
|
|
23 |
retriever = vectordb.as_retriever()
|
24 |
|
25 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
26 |
-
return qa_chain.run(question)
|
|
|
1 |
+
from transformers import pipeline
|
2 |
from langchain.llms import HuggingFacePipeline
|
3 |
from langchain.chains import RetrievalQA
|
4 |
from agents.retriever_agent import create_vectorstore
|
5 |
|
6 |
def generate_brief(question):
|
7 |
+
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
llm = HuggingFacePipeline(pipeline=pipe)
|
10 |
|
|
|
12 |
retriever = vectordb.as_retriever()
|
13 |
|
14 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
15 |
+
return qa_chain.run(question)
|