from transformers import pipeline from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from agents.retriever_agent import create_vectorstore def generate_brief(question): pipe = pipeline("text2text-generation", model="google/flan-t5-small") llm = HuggingFacePipeline(pipeline=pipe) vectordb = create_vectorstore() retriever = vectordb.as_retriever() qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever) return qa_chain.run(question)