Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,42 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from streamlit_drawable_canvas import st_canvas
|
|
|
3 |
import numpy as np
|
4 |
-
from tensorflow.keras.models import load_model
|
5 |
-
from PIL import Image
|
6 |
-
import cv2
|
7 |
|
8 |
-
st.set_page_config(page_title="MNIST Digit Recognizer", layout="centered")
|
9 |
-
st.title("🖌️ Draw a digit (0-9)")
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
@st.cache_resource
|
13 |
def load_mnist_model():
|
14 |
-
return load_model("digit_recog.keras")
|
15 |
|
16 |
model = load_mnist_model()
|
17 |
|
18 |
-
# Create canvas component
|
19 |
canvas_result = st_canvas(
|
20 |
-
fill_color="
|
21 |
-
stroke_width=
|
22 |
-
stroke_color=
|
23 |
-
background_color=
|
24 |
-
|
25 |
-
height=
|
26 |
-
|
27 |
-
|
|
|
28 |
)
|
29 |
|
30 |
if canvas_result.image_data is not None:
|
31 |
-
|
32 |
-
img = canvas_result.image_data
|
33 |
-
img =
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
predicted_class = np.argmax(pred)
|
41 |
-
|
42 |
-
st.write(f"**Predicted Digit:** `{predicted_class}`")
|
43 |
-
st.bar_chart(pred)
|
44 |
-
else:
|
45 |
-
st.info("Draw a digit above to see the prediction.")
|
46 |
-
|
47 |
-
st.caption("Made with Streamlit ✨")
|
|
|
1 |
import streamlit as st
|
2 |
+
import cv2
|
3 |
from streamlit_drawable_canvas import st_canvas
|
4 |
+
from keras.models import load_model
|
5 |
import numpy as np
|
|
|
|
|
|
|
6 |
|
|
|
|
|
7 |
|
8 |
+
drawing_mode = st.sidebar.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"))
|
9 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 10)
|
10 |
+
stroke_color = st.sidebar.color_picker("Stroke color hex: ", "#000000") # black
|
11 |
+
bg_color = st.sidebar.color_picker("Background color hex: ", "#FFFFFF") # white
|
12 |
+
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
|
13 |
+
realtime_update = st.sidebar.checkbox("Update in realtime", True)
|
14 |
+
|
15 |
@st.cache_resource
|
16 |
def load_mnist_model():
|
17 |
+
return load_model("digit_recog.keras")
|
18 |
|
19 |
model = load_mnist_model()
|
20 |
|
|
|
21 |
canvas_result = st_canvas(
|
22 |
+
fill_color="rgba(255, 165, 0, 0.3)",
|
23 |
+
stroke_width=stroke_width,
|
24 |
+
stroke_color=stroke_color,
|
25 |
+
background_color=bg_color,
|
26 |
+
update_streamlit=realtime_update,
|
27 |
+
height=280,
|
28 |
+
width=280,
|
29 |
+
drawing_mode=drawing_mode,
|
30 |
+
key="canvas",
|
31 |
)
|
32 |
|
33 |
if canvas_result.image_data is not None:
|
34 |
+
st.image(canvas_result.image_data, caption="Original Drawing")
|
35 |
+
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
|
36 |
+
img = 255 - img
|
37 |
+
img_resized = cv2.resize(img, (28, 28))
|
38 |
+
img_normalized = img_resized / 255.0
|
39 |
+
final_img = img_normalized.reshape(1, 28, 28, 1)
|
40 |
+
st.image(img_resized, caption="Preprocessed (28x28)")
|
41 |
+
prediction = model.predict(final_img)
|
42 |
+
st.write("Prediction:", np.argmax(prediction))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|