zoya23 commited on
Commit
ecce294
·
verified ·
1 Parent(s): 07277d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -33
app.py CHANGED
@@ -1,47 +1,42 @@
1
  import streamlit as st
 
2
  from streamlit_drawable_canvas import st_canvas
 
3
  import numpy as np
4
- from tensorflow.keras.models import load_model
5
- from PIL import Image
6
- import cv2
7
 
8
- st.set_page_config(page_title="MNIST Digit Recognizer", layout="centered")
9
- st.title("🖌️ Draw a digit (0-9)")
10
 
11
- # Load pre-trained model (you can upload your own model to the space)
 
 
 
 
 
 
12
  @st.cache_resource
13
  def load_mnist_model():
14
- return load_model("digit_recog.keras") # You must upload this file to your Space
15
 
16
  model = load_mnist_model()
17
 
18
- # Create canvas component
19
  canvas_result = st_canvas(
20
- fill_color="#000000", # Black background
21
- stroke_width=10,
22
- stroke_color="#FFFFFF", # White digit
23
- background_color="#000000",
24
- width=200,
25
- height=200,
26
- drawing_mode="freedraw",
27
- key="canvas"
 
28
  )
29
 
30
  if canvas_result.image_data is not None:
31
- # Preprocess the image for prediction
32
- img = canvas_result.image_data[:, :, 0] # Get only one channel
33
- img = cv2.resize(img, (28, 28)) # Resize to 28x28
34
- img = img.astype("float32") / 255.0
35
- img = np.expand_dims(img, axis=0)
36
- img = np.expand_dims(img, axis=-1)
37
-
38
- st.subheader("🧠 Model Prediction")
39
- pred = model.predict(img)[0]
40
- predicted_class = np.argmax(pred)
41
-
42
- st.write(f"**Predicted Digit:** `{predicted_class}`")
43
- st.bar_chart(pred)
44
- else:
45
- st.info("Draw a digit above to see the prediction.")
46
-
47
- st.caption("Made with Streamlit ✨")
 
1
  import streamlit as st
2
+ import cv2
3
  from streamlit_drawable_canvas import st_canvas
4
+ from keras.models import load_model
5
  import numpy as np
 
 
 
6
 
 
 
7
 
8
+ drawing_mode = st.sidebar.selectbox("Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"))
9
+ stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 10)
10
+ stroke_color = st.sidebar.color_picker("Stroke color hex: ", "#000000") # black
11
+ bg_color = st.sidebar.color_picker("Background color hex: ", "#FFFFFF") # white
12
+ bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
13
+ realtime_update = st.sidebar.checkbox("Update in realtime", True)
14
+
15
  @st.cache_resource
16
  def load_mnist_model():
17
+ return load_model("digit_recog.keras")
18
 
19
  model = load_mnist_model()
20
 
 
21
  canvas_result = st_canvas(
22
+ fill_color="rgba(255, 165, 0, 0.3)",
23
+ stroke_width=stroke_width,
24
+ stroke_color=stroke_color,
25
+ background_color=bg_color,
26
+ update_streamlit=realtime_update,
27
+ height=280,
28
+ width=280,
29
+ drawing_mode=drawing_mode,
30
+ key="canvas",
31
  )
32
 
33
  if canvas_result.image_data is not None:
34
+ st.image(canvas_result.image_data, caption="Original Drawing")
35
+ img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
36
+ img = 255 - img
37
+ img_resized = cv2.resize(img, (28, 28))
38
+ img_normalized = img_resized / 255.0
39
+ final_img = img_normalized.reshape(1, 28, 28, 1)
40
+ st.image(img_resized, caption="Preprocessed (28x28)")
41
+ prediction = model.predict(final_img)
42
+ st.write("Prediction:", np.argmax(prediction))