File size: 2,425 Bytes
a01b0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import AzureChatOpenAI
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
import os
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
#llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY, temperature=0, model_name='gpt-3.5-turbo',openai_api_base=OPENAI_API_BASE)
llm = AzureChatOpenAI(deployment_name="bitservice_chat_35",openai_api_base=OPENAI_API_BASE,openai_api_key=OPENAI_API_KEY,openai_api_version="2023-03-15-preview",model_name="gpt-3.5-turbo")
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
image_to_text_model = "Salesforce/blip-image-captioning-large"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = BlipProcessor.from_pretrained(image_to_text_model)
model = BlipForConditionalGeneration.from_pretrained(image_to_text_model).to(device)
from transformers.models.oneformer.modeling_oneformer import OneFormerModelOutput
import requests
from PIL import Image
def describeImage(image_url):
image_object = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
# image
inputs = processor(image_object, return_tensors="pt").to(device)
outputs = model.generate(**inputs)
return processor.decode(outputs[0], skip_special_tokens=True)
from langchain.tools import BaseTool
class DescribeImageTool(BaseTool):
name = "Describe Image Tool"
description = 'use this tool to describe an image.'
def _run(self, url: str):
description = describeImage(url)
return description
def _arun(self, query: str):
raise NotImplementedError("Async operation not supported yet")
tools = [DescribeImageTool()]
agent = initialize_agent(
agent='chat-conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
early_stopping_method='generate',
memory=ConversationBufferWindowMemory(
memory_key='chat_history',
k=5,
return_messages=True
)
)
image_url = 'https://images.unsplash.com/photo-1682228287072-5e23cbffd487?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=987&q=80'
agent(f"Please describe the following image:\n{image_url}") |