Commit 
							
							Β·
						
						68f6086
	
1
								Parent(s):
							
							9b1ec91
								
update app
Browse files- app.py +151 -108
 - utils/utils.py +12 -0
 
    	
        app.py
    CHANGED
    
    | 
         @@ -6,90 +6,111 @@ from leffa.model import LeffaModel 
     | 
|
| 6 | 
         
             
            from leffa.inference import LeffaInference
         
     | 
| 7 | 
         
             
            from utils.garment_agnostic_mask_predictor import AutoMasker
         
     | 
| 8 | 
         
             
            from utils.densepose_predictor import DensePosePredictor
         
     | 
| 9 | 
         
            -
            from utils.utils import resize_and_center
         
     | 
| 10 | 
         | 
| 11 | 
         
             
            import gradio as gr
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            # Download checkpoints
         
     | 
| 14 | 
         
             
            snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
         
     | 
| 15 | 
         | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
                 
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                 
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                     
     | 
| 53 | 
         
            -
                     
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                     
     | 
| 74 | 
         
            -
                    " 
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 93 | 
         | 
| 94 | 
         | 
| 95 | 
         
             
            if __name__ == "__main__":
         
     | 
| 
         @@ -100,14 +121,26 @@ if __name__ == "__main__": 
     | 
|
| 100 | 
         
             
                # control_type = sys.argv[3]
         
     | 
| 101 | 
         
             
                # leffa_predict(src_image_path, ref_image_path, control_type)
         
     | 
| 102 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 103 | 
         
             
                title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
         
     | 
| 104 | 
         
            -
                link = "[π Paper](https://arxiv.org/abs/2412.08486) - [π₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [π€ Model](https://huggingface.co/franciszzj/Leffa)"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 105 | 
         
             
                description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
         
     | 
| 106 | 
         
            -
                note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD, and pose transfer uses DeepFashion."
         
     | 
| 107 | 
         | 
| 108 | 
         
             
                with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
         
     | 
| 109 | 
         
             
                    gr.Markdown(title)
         
     | 
| 110 | 
         
             
                    gr.Markdown(link)
         
     | 
| 
         | 
|
| 111 | 
         
             
                    gr.Markdown(description)
         
     | 
| 112 | 
         | 
| 113 | 
         
             
                    with gr.Tab("Control Appearance (Virtual Try-on)"):
         
     | 
| 
         @@ -124,12 +157,8 @@ if __name__ == "__main__": 
     | 
|
| 124 | 
         | 
| 125 | 
         
             
                                gr.Examples(
         
     | 
| 126 | 
         
             
                                    inputs=vt_src_image,
         
     | 
| 127 | 
         
            -
                                    examples_per_page= 
     | 
| 128 | 
         
            -
                                    examples= 
     | 
| 129 | 
         
            -
                                              "./ckpts/examples/person1/01376_00.jpg",
         
     | 
| 130 | 
         
            -
                                              "./ckpts/examples/person1/01416_00.jpg",
         
     | 
| 131 | 
         
            -
                                              "./ckpts/examples/person1/05976_00.jpg",
         
     | 
| 132 | 
         
            -
                                              "./ckpts/examples/person1/06094_00.jpg",],
         
     | 
| 133 | 
         
             
                                )
         
     | 
| 134 | 
         | 
| 135 | 
         
             
                            with gr.Column():
         
     | 
| 
         @@ -144,12 +173,8 @@ if __name__ == "__main__": 
     | 
|
| 144 | 
         | 
| 145 | 
         
             
                                gr.Examples(
         
     | 
| 146 | 
         
             
                                    inputs=vt_ref_image,
         
     | 
| 147 | 
         
            -
                                    examples_per_page= 
     | 
| 148 | 
         
            -
                                    examples= 
     | 
| 149 | 
         
            -
                                              "./ckpts/examples/garment/01486_00.jpg",
         
     | 
| 150 | 
         
            -
                                              "./ckpts/examples/garment/01853_00.jpg",
         
     | 
| 151 | 
         
            -
                                              "./ckpts/examples/garment/02070_00.jpg",
         
     | 
| 152 | 
         
            -
                                              "./ckpts/examples/garment/03553_00.jpg",],
         
     | 
| 153 | 
         
             
                                )
         
     | 
| 154 | 
         | 
| 155 | 
         
             
                            with gr.Column():
         
     | 
| 
         @@ -163,8 +188,24 @@ if __name__ == "__main__": 
     | 
|
| 163 | 
         
             
                                with gr.Row():
         
     | 
| 164 | 
         
             
                                    vt_gen_button = gr.Button("Generate")
         
     | 
| 165 | 
         | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 168 | 
         | 
| 169 | 
         
             
                    with gr.Tab("Control Pose (Pose Transfer)"):
         
     | 
| 170 | 
         
             
                        with gr.Row():
         
     | 
| 
         @@ -180,12 +221,8 @@ if __name__ == "__main__": 
     | 
|
| 180 | 
         | 
| 181 | 
         
             
                                gr.Examples(
         
     | 
| 182 | 
         
             
                                    inputs=pt_ref_image,
         
     | 
| 183 | 
         
            -
                                    examples_per_page= 
     | 
| 184 | 
         
            -
                                    examples= 
     | 
| 185 | 
         
            -
                                              "./ckpts/examples/person1/01376_00.jpg",
         
     | 
| 186 | 
         
            -
                                              "./ckpts/examples/person1/01416_00.jpg",
         
     | 
| 187 | 
         
            -
                                              "./ckpts/examples/person1/05976_00.jpg",
         
     | 
| 188 | 
         
            -
                                              "./ckpts/examples/person1/06094_00.jpg",],
         
     | 
| 189 | 
         
             
                                )
         
     | 
| 190 | 
         | 
| 191 | 
         
             
                            with gr.Column():
         
     | 
| 
         @@ -200,12 +237,8 @@ if __name__ == "__main__": 
     | 
|
| 200 | 
         | 
| 201 | 
         
             
                                gr.Examples(
         
     | 
| 202 | 
         
             
                                    inputs=pt_src_image,
         
     | 
| 203 | 
         
            -
                                    examples_per_page= 
     | 
| 204 | 
         
            -
                                    examples= 
     | 
| 205 | 
         
            -
                                              "./ckpts/examples/person2/01875_00.jpg",
         
     | 
| 206 | 
         
            -
                                              "./ckpts/examples/person2/02532_00.jpg",
         
     | 
| 207 | 
         
            -
                                              "./ckpts/examples/person2/02902_00.jpg",
         
     | 
| 208 | 
         
            -
                                              "./ckpts/examples/person2/05346_00.jpg",],
         
     | 
| 209 | 
         
             
                                )
         
     | 
| 210 | 
         | 
| 211 | 
         
             
                            with gr.Column():
         
     | 
| 
         @@ -219,8 +252,18 @@ if __name__ == "__main__": 
     | 
|
| 219 | 
         
             
                                with gr.Row():
         
     | 
| 220 | 
         
             
                                    pose_transfer_gen_button = gr.Button("Generate")
         
     | 
| 221 | 
         | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 224 | 
         | 
| 225 | 
         
             
                    gr.Markdown(note)
         
     | 
| 226 | 
         | 
| 
         | 
|
| 6 | 
         
             
            from leffa.inference import LeffaInference
         
     | 
| 7 | 
         
             
            from utils.garment_agnostic_mask_predictor import AutoMasker
         
     | 
| 8 | 
         
             
            from utils.densepose_predictor import DensePosePredictor
         
     | 
| 9 | 
         
            +
            from utils.utils import resize_and_center, list_dir
         
     | 
| 10 | 
         | 
| 11 | 
         
             
            import gradio as gr
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            # Download checkpoints
         
     | 
| 14 | 
         
             
            snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
         
     | 
| 15 | 
         | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            class LeffaPredictor(object):
         
     | 
| 18 | 
         
            +
                def __init__(self):
         
     | 
| 19 | 
         
            +
                    self.mask_predictor = AutoMasker(
         
     | 
| 20 | 
         
            +
                        densepose_path="./ckpts/densepose",
         
     | 
| 21 | 
         
            +
                        schp_path="./ckpts/schp",
         
     | 
| 22 | 
         
            +
                    )
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    self.densepose_predictor = DensePosePredictor(
         
     | 
| 25 | 
         
            +
                        config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
         
     | 
| 26 | 
         
            +
                        weights_path="./ckpts/densepose/model_final_162be9.pkl",
         
     | 
| 27 | 
         
            +
                    )
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    vt_model = LeffaModel(
         
     | 
| 30 | 
         
            +
                        pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
         
     | 
| 31 | 
         
            +
                        pretrained_model="./ckpts/virtual_tryon.pth",
         
     | 
| 32 | 
         
            +
                    )
         
     | 
| 33 | 
         
            +
                    self.vt_inference = LeffaInference(model=vt_model)
         
     | 
| 34 | 
         
            +
                    self.vt_model_type = "viton_hd"
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    pt_model = LeffaModel(
         
     | 
| 37 | 
         
            +
                        pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
         
     | 
| 38 | 
         
            +
                        pretrained_model="./ckpts/pose_transfer.pth",
         
     | 
| 39 | 
         
            +
                    )
         
     | 
| 40 | 
         
            +
                    self.pt_inference = LeffaInference(model=pt_model)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                def change_vt_model(self, vt_model_type):
         
     | 
| 43 | 
         
            +
                    if vt_model_type == self.vt_model_type:
         
     | 
| 44 | 
         
            +
                        return
         
     | 
| 45 | 
         
            +
                    if vt_model_type == "viton_hd":
         
     | 
| 46 | 
         
            +
                        pretrained_model = "./ckpts/virtual_tryon.pth"
         
     | 
| 47 | 
         
            +
                    elif vt_model_type == "dress_code":
         
     | 
| 48 | 
         
            +
                        pretrained_model = "./ckpts/virtual_tryon_dc.pth"
         
     | 
| 49 | 
         
            +
                    vt_model = LeffaModel(
         
     | 
| 50 | 
         
            +
                        pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
         
     | 
| 51 | 
         
            +
                        pretrained_model=pretrained_model,
         
     | 
| 52 | 
         
            +
                    )
         
     | 
| 53 | 
         
            +
                    self.vt_inference = LeffaInference(model=vt_model)
         
     | 
| 54 | 
         
            +
                    self.vt_model_type = vt_model_type
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                def leffa_predict(self, src_image_path, ref_image_path, control_type, step=50, scale=2.5, seed=42):
         
     | 
| 57 | 
         
            +
                    assert control_type in [
         
     | 
| 58 | 
         
            +
                        "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
         
     | 
| 59 | 
         
            +
                    src_image = Image.open(src_image_path)
         
     | 
| 60 | 
         
            +
                    ref_image = Image.open(ref_image_path)
         
     | 
| 61 | 
         
            +
                    src_image = resize_and_center(src_image, 768, 1024)
         
     | 
| 62 | 
         
            +
                    ref_image = resize_and_center(ref_image, 768, 1024)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    src_image_array = np.array(src_image)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    # Mask
         
     | 
| 67 | 
         
            +
                    if control_type == "virtual_tryon":
         
     | 
| 68 | 
         
            +
                        src_image = src_image.convert("RGB")
         
     | 
| 69 | 
         
            +
                        mask = self.mask_predictor(src_image, "upper")["mask"]
         
     | 
| 70 | 
         
            +
                    elif control_type == "pose_transfer":
         
     | 
| 71 | 
         
            +
                        mask = Image.fromarray(np.ones_like(src_image_array) * 255)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    # DensePose
         
     | 
| 74 | 
         
            +
                    if control_type == "virtual_tryon":
         
     | 
| 75 | 
         
            +
                        src_image_seg_array = self.densepose_predictor.predict_seg(
         
     | 
| 76 | 
         
            +
                            src_image_array)
         
     | 
| 77 | 
         
            +
                        src_image_seg = Image.fromarray(src_image_seg_array)
         
     | 
| 78 | 
         
            +
                        densepose = src_image_seg
         
     | 
| 79 | 
         
            +
                    elif control_type == "pose_transfer":
         
     | 
| 80 | 
         
            +
                        src_image_iuv_array = self.densepose_predictor.predict_iuv(
         
     | 
| 81 | 
         
            +
                            src_image_array)
         
     | 
| 82 | 
         
            +
                        src_image_iuv = Image.fromarray(src_image_iuv_array)
         
     | 
| 83 | 
         
            +
                        densepose = src_image_iuv
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    # Leffa
         
     | 
| 86 | 
         
            +
                    transform = LeffaTransform()
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    data = {
         
     | 
| 89 | 
         
            +
                        "src_image": [src_image],
         
     | 
| 90 | 
         
            +
                        "ref_image": [ref_image],
         
     | 
| 91 | 
         
            +
                        "mask": [mask],
         
     | 
| 92 | 
         
            +
                        "densepose": [densepose],
         
     | 
| 93 | 
         
            +
                    }
         
     | 
| 94 | 
         
            +
                    data = transform(data)
         
     | 
| 95 | 
         
            +
                    if control_type == "virtual_tryon":
         
     | 
| 96 | 
         
            +
                        inference = self.vt_inference
         
     | 
| 97 | 
         
            +
                    elif control_type == "pose_transfer":
         
     | 
| 98 | 
         
            +
                        inference = self.pt_inference
         
     | 
| 99 | 
         
            +
                    output = inference(
         
     | 
| 100 | 
         
            +
                        data,
         
     | 
| 101 | 
         
            +
                        num_inference_steps=step,
         
     | 
| 102 | 
         
            +
                        guidance_scale=scale,
         
     | 
| 103 | 
         
            +
                        seed=seed,)
         
     | 
| 104 | 
         
            +
                    gen_image = output["generated_image"][0]
         
     | 
| 105 | 
         
            +
                    # gen_image.save("gen_image.png")
         
     | 
| 106 | 
         
            +
                    return np.array(gen_image)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                def leffa_predict_vt(self, src_image_path, ref_image_path, step, scale, seed, vt_model_type="viton_hd"):
         
     | 
| 109 | 
         
            +
                    self.change_vt_model(vt_model_type)
         
     | 
| 110 | 
         
            +
                    return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", step, scale, seed)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def leffa_predict_pt(self, src_image_path, ref_image_path, step, scale, seed):
         
     | 
| 113 | 
         
            +
                    return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", step, scale, seed)
         
     | 
| 114 | 
         | 
| 115 | 
         | 
| 116 | 
         
             
            if __name__ == "__main__":
         
     | 
| 
         | 
|
| 121 | 
         
             
                # control_type = sys.argv[3]
         
     | 
| 122 | 
         
             
                # leffa_predict(src_image_path, ref_image_path, control_type)
         
     | 
| 123 | 
         | 
| 124 | 
         
            +
                leffa_predictor = LeffaPredictor()
         
     | 
| 125 | 
         
            +
                example_dir = "./ckpts/examples"
         
     | 
| 126 | 
         
            +
                person1_images = list_dir(f"{example_dir}/person1")
         
     | 
| 127 | 
         
            +
                person2_images = list_dir(f"{example_dir}/person2")
         
     | 
| 128 | 
         
            +
                garment_images = list_dir(f"{example_dir}/garment")
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
             
                title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
         
     | 
| 131 | 
         
            +
                link = "[π Paper](https://arxiv.org/abs/2412.08486) - [π€ Code](https://github.com/franciszzj/Leffa) - [π₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [π€ Model](https://huggingface.co/franciszzj/Leffa)"
         
     | 
| 132 | 
         
            +
                news = """## News
         
     | 
| 133 | 
         
            +
                        - 16/Dec/2024, the virtual try-on [model](https://huggingface.co/franciszzj/Leffa/blob/main/virtual_tryon_dc.pth) trained on DressCode is released.
         
     | 
| 134 | 
         
            +
                        - 12/Dec/2024, the HuggingFace [demo](https://huggingface.co/spaces/franciszzj/Leffa) and [models](https://huggingface.co/franciszzj/Leffa) (virtual try-on model trained on VITON-HD and pose transfer model trained on DeepFashion) are released.
         
     | 
| 135 | 
         
            +
                        - 11/Dec/2024, the [arXiv](https://arxiv.org/abs/2412.08486) version of the paper is released.
         
     | 
| 136 | 
         
            +
                        """
         
     | 
| 137 | 
         
             
                description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
         
     | 
| 138 | 
         
            +
                note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
         
     | 
| 139 | 
         | 
| 140 | 
         
             
                with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
         
     | 
| 141 | 
         
             
                    gr.Markdown(title)
         
     | 
| 142 | 
         
             
                    gr.Markdown(link)
         
     | 
| 143 | 
         
            +
                    gr.Markdown(news)
         
     | 
| 144 | 
         
             
                    gr.Markdown(description)
         
     | 
| 145 | 
         | 
| 146 | 
         
             
                    with gr.Tab("Control Appearance (Virtual Try-on)"):
         
     | 
| 
         | 
|
| 157 | 
         | 
| 158 | 
         
             
                                gr.Examples(
         
     | 
| 159 | 
         
             
                                    inputs=vt_src_image,
         
     | 
| 160 | 
         
            +
                                    examples_per_page=10,
         
     | 
| 161 | 
         
            +
                                    examples=person1_images,
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 162 | 
         
             
                                )
         
     | 
| 163 | 
         | 
| 164 | 
         
             
                            with gr.Column():
         
     | 
| 
         | 
|
| 173 | 
         | 
| 174 | 
         
             
                                gr.Examples(
         
     | 
| 175 | 
         
             
                                    inputs=vt_ref_image,
         
     | 
| 176 | 
         
            +
                                    examples_per_page=10,
         
     | 
| 177 | 
         
            +
                                    examples=garment_images,
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 178 | 
         
             
                                )
         
     | 
| 179 | 
         | 
| 180 | 
         
             
                            with gr.Column():
         
     | 
| 
         | 
|
| 188 | 
         
             
                                with gr.Row():
         
     | 
| 189 | 
         
             
                                    vt_gen_button = gr.Button("Generate")
         
     | 
| 190 | 
         | 
| 191 | 
         
            +
                                with gr.Accordion("Advanced Options", open=False):
         
     | 
| 192 | 
         
            +
                                    vt_step = gr.Number(
         
     | 
| 193 | 
         
            +
                                        label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                                    vt_scale = gr.Number(
         
     | 
| 196 | 
         
            +
                                        label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                                    vt_seed = gr.Number(
         
     | 
| 199 | 
         
            +
                                        label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                                    vt_model_type = gr.Radio(
         
     | 
| 202 | 
         
            +
                                        choices=["viton_hd", "dress_code"],
         
     | 
| 203 | 
         
            +
                                        value="viton_hd",
         
     | 
| 204 | 
         
            +
                                        label="Model Type",
         
     | 
| 205 | 
         
            +
                                    )
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                            vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
         
     | 
| 208 | 
         
            +
                                vt_src_image, vt_ref_image, vt_step, vt_scale, vt_seed, vt_model_type], outputs=[vt_gen_image])
         
     | 
| 209 | 
         | 
| 210 | 
         
             
                    with gr.Tab("Control Pose (Pose Transfer)"):
         
     | 
| 211 | 
         
             
                        with gr.Row():
         
     | 
| 
         | 
|
| 221 | 
         | 
| 222 | 
         
             
                                gr.Examples(
         
     | 
| 223 | 
         
             
                                    inputs=pt_ref_image,
         
     | 
| 224 | 
         
            +
                                    examples_per_page=10,
         
     | 
| 225 | 
         
            +
                                    examples=person1_images,
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 226 | 
         
             
                                )
         
     | 
| 227 | 
         | 
| 228 | 
         
             
                            with gr.Column():
         
     | 
| 
         | 
|
| 237 | 
         | 
| 238 | 
         
             
                                gr.Examples(
         
     | 
| 239 | 
         
             
                                    inputs=pt_src_image,
         
     | 
| 240 | 
         
            +
                                    examples_per_page=10,
         
     | 
| 241 | 
         
            +
                                    examples=person2_images,
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 242 | 
         
             
                                )
         
     | 
| 243 | 
         | 
| 244 | 
         
             
                            with gr.Column():
         
     | 
| 
         | 
|
| 252 | 
         
             
                                with gr.Row():
         
     | 
| 253 | 
         
             
                                    pose_transfer_gen_button = gr.Button("Generate")
         
     | 
| 254 | 
         | 
| 255 | 
         
            +
                                with gr.Accordion("Advanced Options", open=False):
         
     | 
| 256 | 
         
            +
                                    pt_step = gr.Number(
         
     | 
| 257 | 
         
            +
                                        label="Inference Steps", minimum=30, maximum=100, step=1, value=50)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                                    pt_scale = gr.Number(
         
     | 
| 260 | 
         
            +
                                        label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                                    pt_seed = gr.Number(
         
     | 
| 263 | 
         
            +
                                        label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                            pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
         
     | 
| 266 | 
         
            +
                                pt_src_image, pt_ref_image, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image])
         
     | 
| 267 | 
         | 
| 268 | 
         
             
                    gr.Markdown(note)
         
     | 
| 269 | 
         | 
    	
        utils/utils.py
    CHANGED
    
    | 
         @@ -1,3 +1,4 @@ 
     | 
|
| 
         | 
|
| 1 | 
         
             
            import cv2
         
     | 
| 2 | 
         
             
            import numpy as np
         
     | 
| 3 | 
         
             
            from PIL import Image
         
     | 
| 
         @@ -29,3 +30,14 @@ def resize_and_center(image, target_width, target_height): 
     | 
|
| 29 | 
         
             
                padded_img[top:top + new_height, left:left + new_width] = resized_img
         
     | 
| 30 | 
         | 
| 31 | 
         
             
                return Image.fromarray(padded_img)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
             
            import cv2
         
     | 
| 3 | 
         
             
            import numpy as np
         
     | 
| 4 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 30 | 
         
             
                padded_img[top:top + new_height, left:left + new_width] = resized_img
         
     | 
| 31 | 
         | 
| 32 | 
         
             
                return Image.fromarray(padded_img)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def list_dir(folder_path):
         
     | 
| 36 | 
         
            +
                # Collect all file paths within the directory
         
     | 
| 37 | 
         
            +
                file_paths = []
         
     | 
| 38 | 
         
            +
                for root, _, files in os.walk(folder_path):
         
     | 
| 39 | 
         
            +
                    for file in files:
         
     | 
| 40 | 
         
            +
                        file_paths.append(os.path.join(root, file))
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                file_paths = sorted(file_paths)
         
     | 
| 43 | 
         
            +
                return file_paths
         
     |