Create handler.py
Browse files- handler.py +83 -0
handler.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
import quant
|
4 |
+
from typing import Dict, Any
|
5 |
+
from gptq import GPTQ
|
6 |
+
from utils import find_layers, DEV
|
7 |
+
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self,
|
11 |
+
model_name="Wizard-Vicuna-13B-Uncensored-GPTQ",
|
12 |
+
checkpoint_path="Wizard-Vicuna-13B-Uncensored-GPTQ/Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors",
|
13 |
+
wbits = 4,
|
14 |
+
groupsize=128,
|
15 |
+
fused_mlp=True,
|
16 |
+
eval=True,
|
17 |
+
warmup_autotune=True):
|
18 |
+
|
19 |
+
self.model = self.load_quant(model_name, checkpoint_path, wbits, groupsize, fused_mlp, eval, warmup_autotune)
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
21 |
+
self.model.to(DEV)
|
22 |
+
|
23 |
+
def load_quant(self, model, checkpoint, wbits, groupsize, fused_mlp, eval, warmup_autotune):
|
24 |
+
config = LlamaConfig.from_pretrained(model)
|
25 |
+
|
26 |
+
def noop(*args, **kwargs):
|
27 |
+
pass
|
28 |
+
|
29 |
+
torch.nn.init.kaiming_uniform_ = noop
|
30 |
+
torch.nn.init.uniform_ = noop
|
31 |
+
torch.nn.init.normal_ = noop
|
32 |
+
|
33 |
+
torch.set_default_dtype(torch.half)
|
34 |
+
transformers.modeling_utils._init_weights = False
|
35 |
+
model = LlamaForCausalLM(config)
|
36 |
+
torch.set_default_dtype(torch.float)
|
37 |
+
if eval:
|
38 |
+
model = model.eval()
|
39 |
+
layers = find_layers(model)
|
40 |
+
for name in ['lm_head']:
|
41 |
+
if name in layers:
|
42 |
+
del layers[name]
|
43 |
+
quant.make_quant_linear(model, layers, wbits, groupsize)
|
44 |
+
|
45 |
+
del layers
|
46 |
+
|
47 |
+
print('Loading model ...')
|
48 |
+
if checkpoint.endswith('.safetensors'):
|
49 |
+
from safetensors.torch import load_file as safe_load
|
50 |
+
model.load_state_dict(safe_load(checkpoint), strict=False)
|
51 |
+
else:
|
52 |
+
model.load_state_dict(torch.load(checkpoint), strict=False)
|
53 |
+
|
54 |
+
if eval:
|
55 |
+
quant.make_quant_attn(model)
|
56 |
+
quant.make_quant_norm(model)
|
57 |
+
if fused_mlp:
|
58 |
+
quant.make_fused_mlp(model)
|
59 |
+
if warmup_autotune:
|
60 |
+
quant.autotune_warmup_linear(model, transpose=not (eval))
|
61 |
+
if eval and fused_mlp:
|
62 |
+
quant.autotune_warmup_fused(model)
|
63 |
+
model.seqlen = 2048
|
64 |
+
print('Done.')
|
65 |
+
|
66 |
+
return model
|
67 |
+
|
68 |
+
def __call__(self, data: Any) -> Dict[str, str]:
|
69 |
+
input_text = data.pop("inputs", data)
|
70 |
+
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to(DEV)
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
generated_ids = self.model.generate(
|
74 |
+
input_ids,
|
75 |
+
do_sample=True,
|
76 |
+
min_length=50,
|
77 |
+
max_length=200,
|
78 |
+
top_p=0.95,
|
79 |
+
temperature=0.8,
|
80 |
+
)
|
81 |
+
generated_text = self.tokenizer.decode([el.item() for el in generated_ids[0]])
|
82 |
+
|
83 |
+
return {'generated_text': generated_text}
|